遥感技术与应用 2023, Vol. 38 Issue (4): 892-902 DOI: 10.11873/j.issn.1004-0323.2023.4.0892 |
数据与图像处理 |
|
|
|
|
基于不同深度学习模型提取建筑轮廓的方法研究 |
胡腾云1( ),解鹏飞1,2( ),温亚楠3,慕号伟3 |
1.北京市城市规划设计研究院,北京 100045 2.北京城垣数字科技有限责任公司,北京 100045 3.中国农业大学土地科学与技术学院,北京 100083 |
|
Research on Building Footprints Extraction Methods based on Different Deep Learning Models |
Tengyun HU1( ),Pengfei XIE1,2( ),Yanan WEN3,Haowei MU3 |
1.Beijing Municipal Institute of City Planning and Design,Beijing 100045,China 2.Beijing City Interface Technology Limited Liability Company,Beijing 100045,China 3.College of Land Science and Technology,China Agricultural University,Beijing 10083,China |
引用本文:
胡腾云,解鹏飞,温亚楠,慕号伟. 基于不同深度学习模型提取建筑轮廓的方法研究[J]. 遥感技术与应用, 2023, 38(4): 892-902.
Tengyun HU,Pengfei XIE,Yanan WEN,Haowei MU. Research on Building Footprints Extraction Methods based on Different Deep Learning Models. Remote Sensing Technology and Application, 2023, 38(4): 892-902.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.4.0892
或
http://www.rsta.ac.cn/CN/Y2023/V38/I4/892
|
1 |
National Bureau of Statistics, Office of the Seventh National Census Leading Group of The State Council. Bulletin of the Seventh National Population Census (No. 7) - Urban and Rural Population and Floating Population Situation [EB/OL], , 2021, 2022.国家统计局, 国务院第七次全国人口普查领导小组办公室. 第七次全国人口普查公报(第七号)—城乡人口和流动人口情况[EB/OL], , 2021, 2022.
|
2 |
WU Jiang. Organic regeneration and elaborated urban management[J]. Time Architecture,2021,180(4):6-11.
|
2 |
伍江. 城市有机更新与精细化管理[J]. 时代建筑,2021,180(4):6-11.
|
3 |
WANG Qian, WANG Zhenmao, YANG Yifan. Oriented to fine management of urban building height guidance——Urban design practice of building height and skyline in the old town of Huairou New Town in Beijing[J]. Beijing Planning Review,2017,176(5):71-76.
|
3 |
王倩, 王振茂, 杨一帆. 面向精细化管理的城市建筑高度引导——北京怀柔新城老城区建筑高度及天际线城市设计实践[J]. 北京规划建设,2017,176(5):71-76.
|
4 |
ZHU He, TANG Yan. Central district urban design for detailed management in new institutional environment: Zhongguancun area, Beijing Case[J]. Planners,2017,33(10):17-23.
|
4 |
祝贺, 唐燕. 新制度环境下对接精细化管理的重点地区城市设计—以北京中关村大街地区城市设计为例[J]. 规划师,2017,33(10):17-23.
|
5 |
WU Chen, LI Jing, ZHOU Xiaojie, et al. Research and practice of urban fine design management——Take Beijing Mentougou New Town and Fangshan New Town urban design pilot work for example[J]. Beijing Planning Review,2018,179(2):186-191.
|
5 |
吴晨, 李婧, 周小洁,等. 城市精细化设计管理研究及实践——以北京门头沟新城及房山新城城市设计试点工作为例[J]. 北京规划建设,2018,179(2):186-191.
|
6 |
ZHANG Qingyun, ZHAO Dong. Research on methods of building extraction from high resolution remote sensing images[J]. Geomatics & Spatial Information Technology, 2015, 38(4):74-78.
|
6 |
张庆云, 赵冬. 高空间分辨率遥感影像建筑物提取方法综述[J]. 测绘与空间地理信息,2015,38(4):74-78.
|
7 |
HUANG X, ZHANG L, ZHU T. Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2013,7(1):105-115. DOI:10.1109/JSTARS. 2013. 2252423
doi: 10.1109/JSTARS. 2013. 2252423
|
8 |
OK A O, SENARAS C, YUKSEL B. Automated detection of arbitrarily shaped buildings in complex environments from monocular vhr optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,51(3):1701-1717. DOI:10.1109/TGRS.2012. 2207123
doi: 10.1109/TGRS.2012. 2207123
|
9 |
CHEN R, LI X, LI J. Object-based features for house detection from rgb high-resolution images[J]. Remote Sensing,2018,10(3):451. DOI:10.3390/rs10030451
doi: 10.3390/rs10030451
|
10 |
FANG Xin, CHEN Shanxiong. High resolution remote sensing image building extraction in dense urban areas[J]. Bulletin of surveying and mapping,2019,505(4):79-83.
|
10 |
方鑫, 陈善雄. 密集城区高分辨率遥感影像建筑物提取[J]. 测绘通报,2019,505(4):79-83.
|
11 |
HUANG X, YUAN W L, LI J Y, et al. A new building extraction postprocessing framework for high-spatial-resolution remote-sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,10(2):654-668. DOI:10.1109/JSTARS.2016. 2587324
doi: 10.1109/JSTARS.2016. 2587324
|
12 |
PILINJA SUBRAHMANYA P, HARIDAS AITHAL B, MITRA S. Automatic extraction of buildings from UAV-based imagery using Artificial Neural Networks[J]. Journal of the Indian Society of Remote Sensing,2021,49: 681-687. DOI:10.1007/s12524-020-01235-z
doi: 10.1007/s12524-020-01235-z
|
13 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. nature,2015,521(7553):436-444. DOI:10.1038/nature14539
doi: 10.1038/nature14539
|
14 |
MARMANIS D, DATCU M, ESCH T, et al. Deep learning earth observation classification using imagenet pretrained networks[J]. IEEE Geoscience & Remote Sensing Letters,2015,13(1):105-109. DOI:10.1109/LGRS.2015.2499239
doi: 10.1109/LGRS.2015.2499239
|
15 |
HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]∥Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13. Springer International Publishing,2014:297-312. DOI:10.1007/978-3-319-10584-0_20
doi: 10.1007/978-3-319-10584-0_20
|
16 |
GUO Feng, MAO Zhengyuan, ZOU Weibin, et al. A method for building extraction by fusing feature information from LiDAR data and high-resolution imagery[J]. Journal of Geo-information Science,2020,22(8):1654-1665.
|
16 |
郭峰, 毛政元, 邹为彬,等. 融合LiDAR数据与高分影像特征信息的建筑物提取方法[J]. 地球信息科学学报,2020,22(8):1654-1665.
|
17 |
YANG Jianyu, ZHOU Zhenxu, DU Zhenrong, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019,35(5):251-258.
|
17 |
杨建宇, 周振旭, 杜贞容,等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报,2019,35(5):251-258.
|
18 |
YANG Xubo, TIAN Jinwen. Research on small building extraction method in small dataset[J]. Bulletin of surveying and mapping,2019,511(10):51-55.
|
18 |
杨旭勃,田金文.小数据集中的小型建筑物提取方法研究[J].测绘通报,2019,511(10):51-55.
|
19 |
REN Xinlei, WANG Yangping, YANG Jingyu, et al. Building detection from remote sensing images based on improved U-net[J]. Laser & Optoelectronics Progress,2019,56(22):195-202.
|
19 |
任欣磊, 王阳萍, 杨景玉,等. 基于改进U-net的遥感影像建筑物提取[J]. 激光与光电子学进展,2019,56(22):195-202.
|
20 |
GUO M, LIU H, XU Y, et al. Building extraction based on Unet with an attention block and multiple losses[J]. Remote Sensing,2020,12(9):1400. DOI:10.3390/rs12091400
doi: 10.3390/rs12091400
|
21 |
XU Zhaohong, LIU Yu, QUAN Jicheng, et al. Buildings egmentation of remote sensing images based on VGG16 pre-encoding[J]. Science Technology and Engineering,2019,19(17):250-255.
|
21 |
徐昭洪, 刘宇, 全吉成,等. 基于VGG16预编码的遥感图像建筑物语义分割[J]. 科学技术与工程,2019,19(17):250-255.
|
22 |
XIE Yuehui, LI Baishou, LIU Congna. Urban building extraction by combining multiple image features and CNN[J]. Remote Sensing Information,2020,35(5):80-88.
|
22 |
谢跃辉, 李百寿, 刘聪娜. 结合多种影像特征与CNN的城市建筑物提取[J]. 遥感信息,2020,35(5):80-88.
|
23 |
LIU Wenxiang, SHU Yuanzhong, TANG Xiaomin, et al. 2020. Remote sensing image segmentation using dual attention mechanism Deeplabv3+algorithm[J]. Tropical Geography,2020,40(2):303-313.
|
23 |
刘文祥, 舒远仲, 唐小敏,等. 采用双注意力机制Deeplabv3+算法的遥感影像语义分割[J]. 热带地理,2020,40(2):303-313.
|
24 |
LIU X. The application of deep convolution neural network to building extraction in remote sensing images[J]. World Scientific Research Journal,2020,6(3):136-144. DOI:10.6911/WSRJ.202003_6(3).0017
doi: 10.6911/WSRJ.202003_6(3).0017
|
25 |
ZHANG Haoran, ZHAO Jianghong, ZHANG Xiaoguang. High-resolution image building extraction using U-net Neural Network[J]. Remote Sensing Information,2020,35(3):143-150.
|
25 |
张浩然, 赵江洪, 张晓光. 利用U-net网络的高分遥感影像建筑提取方法[J]. 遥感信息,2020,35(3):143-150.
|
26 |
WANG Junqiang, LI Jiansheng, ZHOU Huachun, et al. Typical element extraction method of remote sensing image based on Deeplabv3 + and CRF[J]. Computer Engineering,2019,45(10):260-265,271.
|
26 |
王俊强, 李建胜, 周华春,等. 基于Deeplabv3+与CRF的遥感影像典型要素提取方法[J]. 计算机工程,2019,45(10):260-265,271.
|
27 |
ZHU Tianyou, DONG Feng, GONG Huixing. Remote sensing building detection based on binarized semantic segmentation[J]. Acta Optica Sinica,2019,39(12):372-382.
|
27 |
朱天佑, 董峰, 龚惠兴. 基于二值语义分割网络的遥感建筑物检测[J]. 光学学报,2019,39(12):372-382.
|
28 |
SILBERMAN N, SONTAG D, FERGUS R. Instance segmentation of indoor scenes using a coverage loss[C]∥Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer International Publishing,2014:616-631. DOI:10.1007/978-3-319-10590-1_40
doi: 10.1007/978-3-319-10590-1_40
|
29 |
WAGNER F H, DALAGNOL R, TARABALKA Y, et al. U-Net-Id, an instance segmentation model for building extraction from satellite images—Case study in the Joanópolis City, Brazil[J]. Remote Sensing,2020,12(10):1544. DOI:10.3390/rs12101544
doi: 10.3390/rs12101544
|
30 |
HUI Jian, QIN Qiming, XU Wei,et al. Instance segmentation of buildings from high-resolution remote sensing images with Multitask Learning[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(6):1067-1077.
|
30 |
惠健, 秦其明, 许伟 等.基于多任务学习的高分辨率遥感影像建筑实例分割[J].北京大学学报(自然科学版),2019,55(6):1067-1077.
|
31 |
SONG Shiran. Research on object recognition method of urban buildings in high spatial resolution remote sensing imagery[D]. Beijing: Beijing University of Civil Engineering and Architecture,2020.
|
31 |
宋师然. 高分遥感城市建筑物对象化识别方法研究[D]. 北京:北京建筑大学,2020.
|
32 |
LI Sensen, WU Qing.Multi-target detection and segmentation of remote sensing images based on improved Mask RCNN[J]. Computer Engineering and Applications,2020,56(14):183-190.
|
32 |
李森森, 吴清. 改进Mask R-CNN的遥感图像多目标检测与分割[J]. 计算机工程与应用,2020,56(14):183-190.
|
33 |
HU Minjun, FENG Dejun, LI Qiang. Automatic extraction of buildings based on instance segmentation model[J]. Bulletin of Surveying and Mapping,2020,517(4):16-20,62.
|
33 |
瑚敏君, 冯德俊, 李强. 基于实例分割模型的建筑物自动提取[J]. 测绘通报,2020,517(4):16-20,62.
|
34 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]∥Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing,2015:234-241. DOI:10.1007/978-3-319-24574-4_28
doi: 10.1007/978-3-319-24574-4_28
|
35 |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:3146-3154.
|
36 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]∥Proceedings of the IEEE International Conference on Computer Vision. 2017:2961-2969.
|
37 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
|
38 |
XIE S, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:1492-1500.
|
39 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:2117-2125.
|
40 |
REN S, HE K, GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems,2015,28.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|