遥感技术与应用 2023, Vol. 38 Issue (4): 913-923 DOI: 10.11873/j.issn.1004-0323.2023.4.0913 |
数据与图像处理 |
|
|
|
|
基于神经网络注意力架构搜索的光学遥感图像场景分类 |
曹斌1( ),郑恩让1( ),沈钧戈2 |
1.陕西科技大学 电气与控制工程学院,陕西 西安 710021 2.西北工业大学 无人系统技术研究院,陕西 西安 710072 |
|
Neural Network Attention Architecture Search for Optical Remote Sensing Image Scene Classification |
Bin CAO1( ),Enrang ZHENG1( ),Junge SHEN2 |
1.School of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi’an 710021,China 2.Unmanned System Research Institute,Northwestern Polytechnical University,Xi’an 710072,China |
1 |
TONG Qingxi, ZHANG Bing, ZHANG Lifu. Advance in hyperspectral remote sensing in China [J]. Acta Remotica Sinica, 2016,20(5):689-707.
|
1 |
童庆禧,张兵,张立福.中国高光谱遥感的前沿进展[J].遥感学报,2016,20(5):689-707.
|
2 |
GONG Peng, LI Xia, XU Bing. Some problems in the theory and application of high resolution image interpretation [J]. Acta Remotica Sinica, 2006,10(1):1-5.
|
2 |
宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5.
|
3 |
CHENG G, YANG C, YAO X, et al. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing,2018,56(5):2811-2821.
|
4 |
HAN X, ZHONG Y, CAO L, et al. Pre-trained alexnet architecture with pyramid pooling and supervision for high spatial resolution remote sensing image scene classification[J]. Remote Sensing, 2017, 9(8): 848.DOI:10.3390/rs9080848
doi: 10.3390/rs9080848
|
5 |
ELSKEN T, METZEN J H, HUTTER F.Neural architecture search:A survey[J].arXiv preprint arXiv:,2018.
|
6 |
XU R, TAO Y, LU Z, et al. Attention-mechanism-containing neural networks for high-resolution remote sensing image classification[J]. Remote Sensing, 2018, 10(10): 1602.DOI:10.3390/rs10101602
doi: 10.3390/rs10101602
|
7 |
WANG Q, LIU S, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2): 1155-1167. DOI:10.1109/tgrs.2018.2864987
doi: 10.1109/tgrs.2018.2864987
|
8 |
YE L, WANG L, SUN Y, et al. Parallel multi-stage features fusion of deep convolutional neural networks for aerial scene classification[J]. Remote Sensing Letters, 2018, 9(3): 294-303. DOI: 10.1080/2150704x.2017.1415477
doi: 10.1080/2150704x.2017.1415477
|
9 |
KAUL A, MAHESHWARY S, PUDI V. Autolearn—automated feature generation and selection[C]∥ 2017 IEEE International Conference on Data Mining (ICDM). IEEE,2017:217-226.
|
10 |
VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J].Artificial Intelligence Review,2002,18(2):77-95.
|
11 |
ELSKEN T, METZEN J H, HUTTER F. Neural architecture search: A survey[J]. arXiv preprint arXiv:,2018.
|
12 |
REAL E, AGGARWAL A, HUANG Y, et al. Aging evolution for image classifier architecture search[C]∥ AAAI Conference on Artificial Intelligence, 2019.
|
13 |
ZOPH B, LE Q V. Neural architecture search with reinforcement learning[J]. arXiv preprint arXiv:, 2016.
|
14 |
LIU H, SIMONYAN K, YANG Y. Darts: Differentiable architecture search[J]. arXiv preprint arXiv:, 2018.
|
15 |
XU Y, XIE L, ZHANG X, et al. PC-DARTS: Partial channel connections for memory-efficient architecture search[J]. arXiv preprint arXiv:, 2019.
|
16 |
LIANG H, ZHANG S, SUN J, et al. Darts+: Improved differentiable architecture search with early stopping[J]. arXiv preprint arXiv:, 2019.
|
17 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.DOI:10.1109/cvpr. 2018.00745
doi: 10.1109/cvpr. 2018.00745
|
18 |
XIA G S, HU J, HU F, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3965-3981. DOI:10.1109/tgrs.2017.2685945
doi: 10.1109/tgrs.2017.2685945
|
19 |
CHENG G, HAN J, LU X. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017,105(10):1865-1883.
|
20 |
ZHOU W, NEWSAM S, LI C,et al.PatternNet:a benchmark dataset for performance evaluation of remote sensing image retrieval[J].ISPRS Journal of Photogrammetry and Remote Sen-sing,2018,145:197-209. DOI:10.1016/j.isprsjprs.2018. 01.004
doi: 10.1016/j.isprsjprs.2018. 01.004
|
21 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv preprint arXiv:,2014.
|
22 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:, 2014.
|
23 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
24 |
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|