遥感技术与应用 2023, Vol. 38 Issue (4): 990-1002 DOI: 10.11873/j.issn.1004-0323.2023.4.0990 |
遥感应用 |
|
|
|
|
基于机器学习的棚户区识别应用——以上海棚户区为例 |
徐丹1( ),林文鹏1,2( ),马帅1 |
1.上海师范大学 环境与地理科学学院,上海 200234 2.上海长三角城市湿地生态系统国家野外科学观测研究站,上海 200234 |
|
Application on Slum Identification Using Machine Learning Methods: A Case Study of Shanghai Slums |
Dan XU1( ),Wenpeng LIN1,2( ),Shuai MA1 |
1.School of Environmental and Geographical Sciences,Shanghai Normal University,Shanghai 200234,China 2.Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station,Shanghai 200234,China |
1 |
LI Naisheng. Thoughts on prevention and control of urban shanty towns[J]. Urban Development Studies, 2000, 7(1):32-34.
|
1 |
李乃胜. 城市棚户区防治的思考[J]. 城市发展研究, 2000, 7(1):32-34.
|
2 |
WANG Mingfeng, CHENG Hong, NING Yuemin. Social integration of migrants in Shanghai's urban villages[J]. Acta Geographica Sinica, 2015, 70(8):1243-1254.
|
2 |
汪明峰, 程红, 宁越敏. 上海城中村外来人口的社会融合及其影响因素[J]. 地理学报, 2015, 70(8): 1243-1254.
|
3 |
Nations United. International development strategy for the third United Nations development decade[M]. New York: United Nations, 1980.
|
4 |
Nations United. Transforming our world: the 2030 Agenda for Sustainable Development[M]. New York: United Nations, 2015.
|
5 |
GAO Xiuxiu, ZHANG Xiaotong, HE Zheng. Emergence of the urban goal and its practice: Background and progress of the SDG11[J]. China Population,Resources and Environment, 2021, 31(11):144-154.
|
5 |
高秀秀, 张晓彤, 何正. 城镇和人类住区议题的演进与实践: SDG11的形成背景及执行进展[J], 中国人口·资源与环境, 2021, 31(11):144-154.
|
6 |
HUANG X, LIU H, ZHANG L. Spatiotemporal detection and analysis of urban villages in mega city regions of China using high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3639-3657. DOI: 10.1109/TGRS.2014.2380779
doi: 10.1109/TGRS.2014.2380779
|
7 |
KUFFER M, PFEFFER K, SLIUZAS R. Slums from space—15 years of slum mapping using remote sensing[J]. Remote Sensing, 2016, 8(6):455. DOI: 10.3390/rs8060455
doi: 10.3390/rs8060455
|
8 |
HOFMAN P, STROBL J, BLASCHLE T, et al. Detecting informal settlements from QuickBird data in Rio de Janeiro using an object based approach[J]. Springer Berlin Heidelberg, 2008.DOI: 10.1007/978-3-540-77058-9_29
doi: 10.1007/978-3-540-77058-9_29
|
9 |
SEBASTIAN D O, BODO C, BIRGIT K. An object-based classification approach for mapping migrant housing in the mega-urban area of the Pearl River Delta (China)[J].Remote Sensing, 2011, 3(8):1710-1723. DOI: 10.3390/rs3081710
doi: 10.3390/rs3081710
|
10 |
JIANG Dong, CHEN Shuai, DING Fangyu, et al. Classification of remote sensing image based on object-oriented method: A case study of Baixiang County[J]. Remote Sensing Technology and Application, 2018, 33(1):143-150.
|
10 |
江东, 陈帅, 丁方宇, 等. 基于面向对象的遥感影像分类研究——以河北省柏乡县为例[J]. 遥感技术与应用, 2018, 33(1):143-150.
|
11 |
ZHANG Liangpei, SHEN Huanfeng. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing,2016,20(5):1050-1061.
|
11 |
张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061.
|
12 |
ZHAO Yunhan, CHEN Gangqiang, CHEN Guangliang, et al. Integrating multi-source big data to extract buildings of urban villages: A case study of Tianhe district, Guangzhou[J]. Geography and Geo-Information Science,2018,34(5):7-13.
|
12 |
赵云涵,陈刚强, 陈广亮,等.耦合多源大数据提取城中村建筑物——以广州市天河区为例[J]. 地理与地理信息科学,2018,34(5):7-13.
|
13 |
CUI Cheng, ZHAO Lu, REN Hongyan,et al. Integrating high-resolution remote sensing image and street view image to identify urban village: A case study in Yuexiu district, Guangzhou city[J].Journal of Remote Sensing,2020,26(9):1802-1813.
|
13 |
崔成,赵璐,任红艳,等.耦合高分遥感影像与街景影像的广州市越秀区城中村识别[J]. 遥感学报,2020,26(9):1802-1813.
|
14 |
FENG Quanlong, CHEN Boan, NIU Bowen, et al. Identification of urban villages from remote sensing image based on multi-scale dilated convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(11):181-218.
|
14 |
冯权泷, 陈泊安, 牛博文, 等. 基于多尺度扩张卷积神经网络的城中村遥感识别[J]. 农业机械学报, 2021, 52(11):181-218.
|
15 |
WURM M, WEIGAND M, SCHMITT A, et al. Exploitation of textural and morphological image features in Sentinel-2A data for slum mapping[C]∥2017 Joint Urban Remote Sensing Event(JURSE),2017.Dubai,UAE:IEEE,2017:1-4.
|
16 |
LEONITA G, KUFFER M, SLIUZAS R, et al. Machine learning-based slum mapping in support of slum upgrading programs: The case of Bandung City,Indonesia[J].Remote sensing,2018,10(10):1522.DOI:10.3390/rs10101522
doi: 10.3390/rs10101522
|
17 |
DUQUE J C, PATINO J E, BETANCOURT A. Exploring the potential of machine learning for automatic slum identification from VHR imagery[J]. Remote Sensing,2017,9(9):895. DOI: 10.3390/rs9090895
doi: 10.3390/rs9090895
|
18 |
WEAVER J, MOORE B, REITH A, et al. A comparison of machine learning techniques to extract human settlements from high resolution imagery[C]//IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018. Valencia, Spain: IEEE, 2018: 6412-6415.
|
19 |
LIAN Xihong, QI Yuan, WANG Hongwei, et al. Automatic extraction of residential information based on object-oriented in the Areas around the Qinghai Lake[J]. Remote Sensing Technology and Application, 2020, 35(4):775-785.
|
19 |
连喜红, 祁元, 王宏伟, 等. 基于面向对象的青海湖环湖区居民地信息自动化提取[J]. 遥感技术与应用, 2020, 35(4):775-785.
|
20 |
MENG Meijun. Research on Shanghai shanty area space change (1927-present)[D]. Shanghai: East China Normal University, China, 2006.孟眉军. 上海市棚户区空间变迁研究(1927年—至今)[D]. 上海:华东师范大学, 2006.
|
21 |
TAUBENBÖCK H, KRAFF N J. The physical face of slums: A structural comparison of slums in Mumbai, India, based on remotely sensed data[J]. Journal of Housing and the Built Environment, 2013, 29(1):15-38.
|
22 |
KIT O, LÜDEKE M. Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83:130-137.
|
23 |
DUQUE J C, PATINO J E, RUIZ L A, et al. Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data[J].Landscape and Urban Planning, 2015, 135:11-21. DOI: 10.1016/j.landurbplan.2014.11.009
doi: 10.1016/j.landurbplan.2014.11.009
|
24 |
RUIZ L A, RECIO J A, FERNÁNDEZ-SARRÍA A, et al. A feature extraction software tool for agricultural object-based image analysis[J]. Computers and Electronics in Agriculture, 2011, 76(2):284-296. DOI:10.1016/j.compag.2011.02.007
doi: 10.1016/j.compag.2011.02.007
|
25 |
RHINANE H, HILALI A, BERRADA A, et al. Detecting slums from SPOT data in Casablanca Morocco using an object based approach[J]. Journal of Geographic Information System, 2011, 3(3):217-224. DOI: 10.4236/jgis.2011.33018
doi: 10.4236/jgis.2011.33018
|
26 |
YANG Lihua, DAI Qi, GUO Yanjun. Study on KNN text categorization algorithm[J]. Control and Automation, 2006, 22(21):269-270, 185.
|
26 |
杨丽华, 戴齐, 郭艳军. KNN文本分类算法研究[J]. 微计算机信息, 2006, 22(21):269-270, 185.
|
27 |
DEVIJVER P A, KITTLER J. Pattern recognition: A statistical approach[J]. Prentice-Hall International, 1982.
|
28 |
WANG Zhenfei, LIU Kaili, ZHENG Zhiyun,et al. Prediction retweeting of microblog based on logistic regression model[J]. Journal of Chinese Computer Systems,2016,37(8):1651-1655.
|
28 |
王振飞, 刘凯莉, 郑志蕴, 等. 基于逻辑回归模型的微博转发预测[J]. 小型微型计算机系统,2016,37(8):1651-1655.
|
29 |
LI Hang. Statistical learning methods[M]. Beijing: Tsinghua University Press, 2012.
|
29 |
李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
|
30 |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.
|
30 |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|