Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1042-1053    DOI: 10.11873/j.issn.1004-0323.2023.5.1042
InSAR专栏     
南迦巴瓦峰地区地表形变的InSAR监测与分析
吴弼星1,2(),郭建文1,3,4(),吴阿丹1,4,刘丰1,冯敏5
1.中国科学院西北生态环境资源研究院 黑河遥感试验研究站,甘肃省遥感重点实验室,甘肃 兰州 730000
2.中国科学院大学,北京 100049
3.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
4.青海师范大学高原科学与可持续发展研究院,青海 西宁 810016
5.中国科学院青藏高原研究所,青藏高原地球系统与资源环境全国重点实验室,国家青藏高原科学数据中心,北京 100101
InSAR Monitoring and Interpretation of Surface Deformation in Namcha Barwa Area
Bixing WU1,2(),Jianwen GUO1,3,4(),Adan WU1,4,Feng LIU1,Min FENG5
1.Heihe Remote Sensing Experimental Research Station,Key Laboratory of Remote Sensing of Gansu Province,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing 210023,China
4.Academy of Plateau Science and Sustainability,Qinghai Normal University,Xining 810016,China
5.National Tibetan Plateau Data Center,State Key Laboratory of Tibetan Plateau Earth System,Resources and Environment (TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
 全文: PDF(10527 KB)   HTML
摘要:

南迦巴瓦峰地区位于东喜马拉雅构造结的构造变形核心地带,地质构造环境复杂,地质灾害频发,加强对该地区的地表形变监测研究对当地防灾减灾和经济可持续发展有着重要意义。研究利用Sentinel-1卫星数据在该区域开展地表形变监测,通过PS-InSAR技术获得雷达视线方向(Line-Of-Sight, LOS)的形变速率分布与形变时间序列数据,并对地表形变的分布情况和2017年米林M6.9地震的同震形变情况展开分析与讨论。结果发现南迦巴瓦地区地表形变受新生代构造变形影响较大,研究区内的构造形变主要有同震、震后松弛形变和板块边界带的俯冲形变。雅鲁藏布江两侧变形差异较大,北侧呈缓慢的负形变趋势,南侧由于受到俯冲断裂的影响以较高的速率正形变。米林地震的同震形变呈现出西南盘负形变,北东盘正形变且西南盘形变量更大的空间分布特征。研究结果表明:InSAR监测技术可为青藏高原灾害监测和科学研究提供高时空分辨率的地表形变数据。

关键词: 南迦巴瓦峰地表形变监测PS?InSARLOS向形变速率    
Abstract:

Namcha Barwa region is located in the core tectonic deformation zone of the Eastern Himalayan Syntaxis with a complicated geological-tectonic environment and frequent geohazards. Therefore, it is of great significance to strengthen the research of surface deformation monitoring in this area for local disaster prevention and mitigation and sustainable economic development. This study aims to monitor surface deformation using Sentinel-1 SAR images in this region. Using PS-InSAR technique, the surface deformation rates distribution and deformation time series on LOS (Line-Of-Sight) were acquired. Then the status of surface deformation distribution and coseismic deformation caused by Mainling M6.9 earthquake in 2017 were discussed. It is revealed that the deformation in Namcha Barwa is greatly affected by Cenozoic tectonic deformation. Tectonic deformation in the study area mainly included coseismic deformation, postseismic relaxation deformation and thrust deformation in plate boundary. The deformations were quite different on both sides of the Yarlung Zangbo River. A slow negative deformation trend is shown on the north side, while the south side is positive deformed at a high rate caused by thrust faults. The coseismic deformation of Mainling earthquake showed a spatial distribution trait of negative deformation on the southeast side of the epicenter, positive deformation on the northeast side, positive and a larger deformation on the southwest side. This study demonstrated that, InSAR can provide high spatial and temporal resolution surface deformation data for hazard monitoring and scientific research on Qinghai-Tibet Plateau.

Key words: Namcha Barwa    Monitoring of surface deformation    PS-InSAR    Deformation rate in LOS direction
收稿日期: 2022-09-27 出版日期: 2023-11-07
ZTFLH:  P642.27  
基金资助: 中国科学院战略性先导科技专项(A类)课题“泛第三极大数据平台及数据集成”(XDA20060600)
通讯作者: 郭建文     E-mail: wubixing@nieer.ac.cn;guojw@lzb.ac.cn
作者简介: 吴弼星(1996-),男,河南荥阳人,硕士研究生,主要从事地表形变监测应用研究。E?mail:wubixing@nieer.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴弼星
郭建文
吴阿丹
刘丰
冯敏

引用本文:

吴弼星,郭建文,吴阿丹,刘丰,冯敏. 南迦巴瓦峰地区地表形变的InSAR监测与分析[J]. 遥感技术与应用, 2023, 38(5): 1042-1053.

Bixing WU,Jianwen GUO,Adan WU,Feng LIU,Min FENG. InSAR Monitoring and Interpretation of Surface Deformation in Namcha Barwa Area. Remote Sensing Technology and Application, 2023, 38(5): 1042-1053.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1042        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1042

图1  南迦巴瓦峰地区地形与断裂分布图(F1: 察隅断裂;F2、F3: 嘉黎断裂;F4: 东久米林断裂;F5: 雅鲁藏布江断裂;F6: 墨脱断裂;F7: 阿帕龙断裂;F8: 主边界断裂带;F9: 主中央断裂;F10: 怒江断裂;F11: 巴青-类乌齐断裂;F12: 澜沧江断裂)
图2  时空基线分布图
图3  预处理流程图
图4  研究方法逻辑体系图
图5  形变速率分布图
图6  分离同震形变后的形变速率分布以及康玉乡、易贡乡代表性PS点的形变序列
图7  形变速率剖面图
图8  米林地震同震形变分布(震中Z1来自哈佛大学GCMT;震中Z2来自中国地震台网中心;震中Z3来自USGS;震中Z4来自中国地震局)
图9  点a、b LOS向形变时序图
图10  南迦巴瓦构造结及阿萨姆构造结运动模式[37, 44]
图11  加拉白垒峰形变速率分布及光学影像
图12  康玉乡形变速率分布及光学影像
图13  点a和点b形变序列
1 GE Xiaohong, REN Shoumai, MA Lixiang, et al. Multi-stage uplifts of the Qinghai-Tibet Plateau and their environmental effects[J]. Earth Science Frontiers, 2006,13(6):118-130.
1 葛肖虹, 任收麦, 马立祥, 等. 青藏高原多期次隆升的环境效应 [J]. 地学前缘, 2006,13(6): 118-130.
2 LI Jijun. Studies on the geomorphological evolution of the Qinghai-Xizang(Tibet) Plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999(1): 7-17
2 李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999(1): 7-17.
3 LI Jijun, FANG Xiaomin, PAN Baotian, et al. Late cenozoic intensive uplift of the Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001,19(5): 381-91.
3 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001,19(5): 381-391.
4 SHI Yafeng, LI Jijun, LI Bingyuan, et al. Uplift of the Qinghai-Xizang(Tibet) Plateau and fast Asia environmental change during late Cenozoic[J]. Acta Geographica Sinica, 1999,54(1): 12-22.
4 施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报,1999,54(1): 12-22.
5 WANG P, SCHERLER D, JING L Z, et al. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet[J]. Science, 2014, 346(6212): 978-981.
6 YANG R, HERMAN F, FELLIN M G, et al. Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya[J]. Tectonophysics, 2018, 722: 43-52.
7 YE Q, KANG S, CHEN F, et al. Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies[J]. Journal of Glaciology, 2006, 52(179): 537-545.
8 KANG S, XU Y, YOU Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1). DOI: 10.1088/1748-9326/5/1/015101
doi: 10.1088/1748-9326/5/1/015101
9 ZHOU Yushan, LI Xin, ZHENG Donghai, et al. The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya[J]. Science China Earth Sciences, 2021, 51 (12): 2112-2125.
9 周玉杉, 李新, 郑东海, 等. 气候变化和异常天气共同导致印度杰莫利冰—岩崩塌[J]. 中国科学:地球科学, 2021, 51(12): 2112-2125.
10 SHUGAR D H, JACQUEMART M, SHEAN D, et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya[J]. Science, 2021, 373(6552): 300-306.
11 WANG Zhe, ZHAO Chaoying, LIU Xiaojie, et al. Evolution analysis and deformation monitoring of Yigong Landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46 (10): 1569-1578.
11 王哲, 赵超英, 刘晓杰, 等. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报·信息科学版, 2021, 46(10): 1569-1578.
12 CHENG Deqiang. Hazard analysis of mountain-hazards in the areas of the Silk Road Economic Belt[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences), 2020.
12 程德强. 丝绸之路经济带山地灾害危险性分析[D]. 成都: 中国科学院大学(中国科学院水利部成都山地灾害与环境研究所), 2020.
13 ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research-Solid Earth, 2017, 122(11): 9290-9312.
14 LI Y, SHAN X, QU C, et al. Crustal deformation of the Altyn Tagh Fault based on GPS[J]. Journal of Geophysical Research-Solid Earth, 2018, 123(11): 10309-10322.
15 LI S, WANG Q, YANG S, et al. Geodetic imaging mega-thrust coupling beneath the Himalaya[J]. Tectonophysics, 2018, 747: 225-238.
16 TIAN Z, YANG Z, BENDICK R, et al. Present-day distribution of deformation around the southern Tibetan Plateau revealed by geodetic and seismic observations[J]. Journal of Asian Earth Sciences, 2019, 171: 322-333.
17 GE W P, MOLNAR P, SHEN Z K, et al. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42(13): 5227-5235.
18 ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 Years of GPS measurements[J]. Journal of Geophysical Research-Solid Earth, 2017, 122(11): 9290-9312.
19 WANG M, SHEN Z K. Present-Day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research-Solid Earth, 2020, 125(2). DOI: 10.1029/2019JB018774
doi: 10.1029/2019JB018774
20 KANG Y, LU Z, ZHAO C Y, et al. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California[J]. Remote Sensing of Environment, 2021,258. DOI: 10.1016/j.rse.2021.112400
doi: 10.1016/j.rse.2021.112400
21 PENG M M, LU Z, ZHAO C Y, et al. 2022. Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis[J]. Remote Sensing of Environment,2022,271:112894. DOI: 10.1016/j.rse.2022.112894
doi: 10.1016/j.rse.2022.112894
22 FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202-2212. DOI:10.1109/36.868878
doi: 10.1109/36.868878
23 FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
24 BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
25 CHEN F L, LIN H, LI Z, et al. Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry[J]. Remote Sensing of Environment, 2012, 123: 532-540.
26 BEKAERT D P S, HANDWERGER A L, AGRAM P, et al. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal[J]. Remote Sensing of Environment,2020,249. DOI:10.1016/j.rse. 2020. 111983
doi: 10.1016/j.rse. 2020. 111983
27 HONG S Y, LIU M. Postseismic deformation and afterslip evolution of the 2015 Gorkha earthquake constrained by InSAR and GPS observations[J].Journal of Geophysical Rese-arch:Solid Earth,2021,126(7). DOI:10.1029/2020JB 020230
doi: 10.1029/2020JB 020230
28 CRIPPA C, VALBUZZI E, FRATTINI P, et al. Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and Squee SAR velocity data[J]. Landslides, 2021, 18(7): 2445-2463.
29 LIU F, ELLIOTT J R, CRAIG T J, et al. Improving the resolving power of InSAR for earthquakes using time series: A case study in Iran[J]. Geophysical Research Letters, 2021, 48(14). DOI: 10.1029/2021GL093043
doi: 10.1029/2021GL093043
30 HENRIQUET M, PEYRET M, DOMINGUEZ S, et al. Present-Day surface deformation of sicily derived from Sentinel-1 InSAR Time-series[J].Journal of Geophysical Research: Solid Earth, 2022, 127(3). DOI: 10.1029/2021JB 023071
doi: 10.1029/2021JB 023071
31 HUSSAIN S, HONGXING S, ALI M, et al. PS-InSAR based validated landslide susceptibility modelling:A case study of Ghizer valley, Northern Pakistan[J]. Geocarto International, 2022, 37(13): 3941-3962.
32 MOULISHREE J, GIRISH CH K, KAPIL M, et al. Response of drainage to tectonics and PS-InSAR derived deformation study in Bilaspur, northwestern Himalaya, India[J]. Geodesy and Geodynamics, 2022, 13(3): 205-218.
33 FATHIAN A, ATZORI S, NAZARI H, et al. Complex co- and postseismic faulting of the 2017-2018 seismic sequence in western Iran revealed by InSAR and seismic data[J]. Remote Sensing of Environment,2021,253. DOI:10.1016/j.rse. 2020.112224
doi: 10.1016/j.rse. 2020.112224
34 CHEN J, WU T, ZOU D, et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau[J]. Remote Sensing of Environment, 2022, 268. DOI: 10.1016/j.rse.2021.112778
doi: 10.1016/j.rse.2021.112778
35 LIU S, ZHAO L, WANG L, et al. Intra-annual ground surface deformation detected by site observation, simulation and InSAR monitoring in permafrost site of Xidatan, Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2022, 49(3). DOI: 10.1029/2021GL095029
doi: 10.1029/2021GL095029
36 COHEN-WAEBER J, BURGMANN R, CHAUSSARD E, et al. Spatiotemporal patterns of precipitation-modulated landslide deformation from independent component analysis of InSAR time series[J]. Geophysical Research Letters, 2018, 45(4): 1878-1887.
37 WANG J, LU Z, GREGG P. Inflation of okmok volcano during 2008-2020 from ps analyses and source inversion with Finite Element models[J]. Journal of Geophysical Research-Solid Earth, 2021, 126(10). DOI: 10.1029/2021J B022420
doi: 10.1029/2021J B022420
38 ZHANG Jinjiang, JI Jianqing, ZHONG Dalai, et al. The tectonic pattern and formation process of Namche Barwa syntaxis in east Himalaya[J]. Science in China(Ser D), 2003(4): 373-83.
38 张进江, 季建清, 钟大赉, 等. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑:地球科学), 2003(4): 373-83.
39 DONG Hanwen, XU Zhiqin, CAO Hui, et al. Comparison of eastern and western boundary faults of eastern Himalayan syntaxis,and its tectonic evolution[J]. Earth Science,2018,43(4): 933-51.
39 董汉文, 许志琴, 曹汇, 等. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程[J]. 地球科学, 2018, 43(4): 933-951.
40 DING Lin, ZHONG Dalai, PAN Yusheng, et al. Fission track evidence of rapid uplift in the eastern Himalayan structure[J]. Chinese Science Bulletin,1995,40(16):1497-1500.
40 丁林, 钟大赉,潘裕生,等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报,1995,40(16):1497-1500.
41 BURG J P, NIEVERGELT P, OBERLI F, et al. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding[J]. Journal of Asian Earth Sciences, 1998, 16(2-3): 239-252.
42 XU Z Q, JI S C, CAI Z H, et al. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology [J]. Gondwana Research, 2012, 21(1): 19-36.
43 LIU Yunhua, SHAN Xinjian, ZHANG Yingfeng, et al. Use of seismic waveforms and InSAR data for determination of the seismotectonics of the Mainling Ms6. 9 earthquake on NOV.18,2017[J]. Seismology and Geology, 2018, 40(6): 1254-75.
43 刘云华, 单新建, 张迎峰, 等. 基于地震波及InSAR数据的2017年11月18日西藏米林M_S6.9地震发震构造[J]. 地震地质, 2018, 40(6): 1254-1275.
44 LI Baokun, DIAO Guiling, XU Xiwei, et al. Redetermination of the source parameters of the Zayü, Tibet M8. 6 earthquake sequence in 1950[J]. Chinese Journal of Geophysics, 2015, 58 (11): 4254-4265.
44 李保昆, 刁桂苓, 徐锡伟, 等. 1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报, 2015, 58(11): 4254-4265.
45 ZHANG Langping, SHAO Zhigang, YAN Rui. Study on the characteristics of seismic activity in southeastern Tibet and surrounding areas[J]. Earthquake, 2011, 31(3):9-18.
45 张浪平, 邵志刚, 晏锐. 藏东南及周边地区地震活动特征研究[J]. 地震, 2011, 31(3): 9-18.
46 Rosen P A, Gurrola E, Sacco G F,et al. The InSAR scientific computing environment[C]∥ EUSAR 2012;9th European Con-ference on Synthetic Aperture Radar. VDE,2012:730-733.
47 HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514: 1-13.
48 LI Yuanqian, ZHANG Yi, SU Xiaojun, et al. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique[J]. National Remote Sensing Bulletin, 2021, 25(2): 677-690.
48 李媛茜, 张毅, 苏晓军, 等. 白龙江流域潜在滑坡InSAR识别与发育特征研究[J]. 遥感学报, 2021, 25(2): 677-690.
49 XIE Chao. A study on tectonic Geomorphology of Namche Barwa and activity of the faults[D]. Beijing: Institute of Geology,China Earthquake Administrator, 2018.
49 谢超. 南迦巴瓦地区构造地貌及断裂活动特征[D]. 北京: 中国地震局地质研究所, 2018.
50 PATZELT A, LI H M, WANG J D, et al. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia [J]. Tectonophysics, 1996, 259(4): 259-284.
51 DEWEY J F, CANDE S, PITMAN W C. Tectonic evolution of the India Eurasia collision zone[J]. Eclogae Geologicae Helvetiae, 1989, 82(3): 717-734.
52 YIN Fengling, HAN Libo, JIANG Changsheng, et al. Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults[J]. Chinese Journal of Geophysics, 2018,61(8): 3185-3197
52 尹凤玲,韩立波,蒋长胜, 等.2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响[J].地球物理学报,2018,61(8):3185-3197.
53 GENG Q R, PAN G T, ZHENG L L, et al. The Eastern Himalayan syntaxis: Major tectonic domains, ophiolitic melanges and geologic evolution[J]. Journal of Asian Earth Sciences, 2006, 27(3): 265-285.
[1] 魏聪敏,葛伟鹏,邵延秀,吴东霖. 利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J]. 遥感技术与应用, 2020, 35(4): 864-872.
[2] 陶利,张红,王超,汤益先. 新型多基线DInSAR地表形变监测技术研究动态[J]. 遥感技术与应用, 2012, 27(6): 805-811.