1 |
GE Xiaohong, REN Shoumai, MA Lixiang, et al. Multi-stage uplifts of the Qinghai-Tibet Plateau and their environmental effects[J]. Earth Science Frontiers, 2006,13(6):118-130.
|
1 |
葛肖虹, 任收麦, 马立祥, 等. 青藏高原多期次隆升的环境效应 [J]. 地学前缘, 2006,13(6): 118-130.
|
2 |
LI Jijun. Studies on the geomorphological evolution of the Qinghai-Xizang(Tibet) Plateau and Asian monsoon[J]. Marine Geology & Quaternary Geology, 1999(1): 7-17
|
2 |
李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999(1): 7-17.
|
3 |
LI Jijun, FANG Xiaomin, PAN Baotian, et al. Late cenozoic intensive uplift of the Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001,19(5): 381-91.
|
3 |
李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001,19(5): 381-391.
|
4 |
SHI Yafeng, LI Jijun, LI Bingyuan, et al. Uplift of the Qinghai-Xizang(Tibet) Plateau and fast Asia environmental change during late Cenozoic[J]. Acta Geographica Sinica, 1999,54(1): 12-22.
|
4 |
施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报,1999,54(1): 12-22.
|
5 |
WANG P, SCHERLER D, JING L Z, et al. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet[J]. Science, 2014, 346(6212): 978-981.
|
6 |
YANG R, HERMAN F, FELLIN M G, et al. Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya[J]. Tectonophysics, 2018, 722: 43-52.
|
7 |
YE Q, KANG S, CHEN F, et al. Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies[J]. Journal of Glaciology, 2006, 52(179): 537-545.
|
8 |
KANG S, XU Y, YOU Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1). DOI: 10.1088/1748-9326/5/1/015101
doi: 10.1088/1748-9326/5/1/015101
|
9 |
ZHOU Yushan, LI Xin, ZHENG Donghai, et al. The joint driving effects of climate and weather changes caused the Chamoli glacier-rock avalanche in the high altitudes of the India Himalaya[J]. Science China Earth Sciences, 2021, 51 (12): 2112-2125.
|
9 |
周玉杉, 李新, 郑东海, 等. 气候变化和异常天气共同导致印度杰莫利冰—岩崩塌[J]. 中国科学:地球科学, 2021, 51(12): 2112-2125.
|
10 |
SHUGAR D H, JACQUEMART M, SHEAN D, et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya[J]. Science, 2021, 373(6552): 300-306.
|
11 |
WANG Zhe, ZHAO Chaoying, LIU Xiaojie, et al. Evolution analysis and deformation monitoring of Yigong Landslide in Tibet with optical remote sensing and InSAR[J]. Geomatics and Information Science of Wuhan University, 2021, 46 (10): 1569-1578.
|
11 |
王哲, 赵超英, 刘晓杰, 等. 西藏易贡滑坡演化光学遥感分析与InSAR形变监测[J]. 武汉大学学报·信息科学版, 2021, 46(10): 1569-1578.
|
12 |
CHENG Deqiang. Hazard analysis of mountain-hazards in the areas of the Silk Road Economic Belt[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Mountain Hazards and Environment, Chinese Academy of Sciences), 2020.
|
12 |
程德强. 丝绸之路经济带山地灾害危险性分析[D]. 成都: 中国科学院大学(中国科学院水利部成都山地灾害与环境研究所), 2020.
|
13 |
ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. Journal of Geophysical Research-Solid Earth, 2017, 122(11): 9290-9312.
|
14 |
LI Y, SHAN X, QU C, et al. Crustal deformation of the Altyn Tagh Fault based on GPS[J]. Journal of Geophysical Research-Solid Earth, 2018, 123(11): 10309-10322.
|
15 |
LI S, WANG Q, YANG S, et al. Geodetic imaging mega-thrust coupling beneath the Himalaya[J]. Tectonophysics, 2018, 747: 225-238.
|
16 |
TIAN Z, YANG Z, BENDICK R, et al. Present-day distribution of deformation around the southern Tibetan Plateau revealed by geodetic and seismic observations[J]. Journal of Asian Earth Sciences, 2019, 171: 322-333.
|
17 |
GE W P, MOLNAR P, SHEN Z K, et al. Present-day crustal thinning in the southern and northern Tibetan Plateau revealed by GPS measurements[J]. Geophysical Research Letters, 2015, 42(13): 5227-5235.
|
18 |
ZHENG G, WANG H, WRIGHT T J, et al. Crustal deformation in the India-Eurasia collision zone from 25 Years of GPS measurements[J]. Journal of Geophysical Research-Solid Earth, 2017, 122(11): 9290-9312.
|
19 |
WANG M, SHEN Z K. Present-Day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research-Solid Earth, 2020, 125(2). DOI: 10.1029/2019JB018774
doi: 10.1029/2019JB018774
|
20 |
KANG Y, LU Z, ZHAO C Y, et al. InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California[J]. Remote Sensing of Environment, 2021,258. DOI: 10.1016/j.rse.2021.112400
doi: 10.1016/j.rse.2021.112400
|
21 |
PENG M M, LU Z, ZHAO C Y, et al. 2022. Mapping land subsidence and aquifer system properties of the Willcox Basin, Arizona, from InSAR observations and independent component analysis[J]. Remote Sensing of Environment,2022,271:112894. DOI: 10.1016/j.rse.2022.112894
doi: 10.1016/j.rse.2022.112894
|
22 |
FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202-2212. DOI:10.1109/36.868878
doi: 10.1109/36.868878
|
23 |
FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.
|
24 |
BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
|
25 |
CHEN F L, LIN H, LI Z, et al. Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry[J]. Remote Sensing of Environment, 2012, 123: 532-540.
|
26 |
BEKAERT D P S, HANDWERGER A L, AGRAM P, et al. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal[J]. Remote Sensing of Environment,2020,249. DOI:10.1016/j.rse. 2020. 111983
doi: 10.1016/j.rse. 2020. 111983
|
27 |
HONG S Y, LIU M. Postseismic deformation and afterslip evolution of the 2015 Gorkha earthquake constrained by InSAR and GPS observations[J].Journal of Geophysical Rese-arch:Solid Earth,2021,126(7). DOI:10.1029/2020JB 020230
doi: 10.1029/2020JB 020230
|
28 |
CRIPPA C, VALBUZZI E, FRATTINI P, et al. Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and Squee SAR velocity data[J]. Landslides, 2021, 18(7): 2445-2463.
|
29 |
LIU F, ELLIOTT J R, CRAIG T J, et al. Improving the resolving power of InSAR for earthquakes using time series: A case study in Iran[J]. Geophysical Research Letters, 2021, 48(14). DOI: 10.1029/2021GL093043
doi: 10.1029/2021GL093043
|
30 |
HENRIQUET M, PEYRET M, DOMINGUEZ S, et al. Present-Day surface deformation of sicily derived from Sentinel-1 InSAR Time-series[J].Journal of Geophysical Research: Solid Earth, 2022, 127(3). DOI: 10.1029/2021JB 023071
doi: 10.1029/2021JB 023071
|
31 |
HUSSAIN S, HONGXING S, ALI M, et al. PS-InSAR based validated landslide susceptibility modelling:A case study of Ghizer valley, Northern Pakistan[J]. Geocarto International, 2022, 37(13): 3941-3962.
|
32 |
MOULISHREE J, GIRISH CH K, KAPIL M, et al. Response of drainage to tectonics and PS-InSAR derived deformation study in Bilaspur, northwestern Himalaya, India[J]. Geodesy and Geodynamics, 2022, 13(3): 205-218.
|
33 |
FATHIAN A, ATZORI S, NAZARI H, et al. Complex co- and postseismic faulting of the 2017-2018 seismic sequence in western Iran revealed by InSAR and seismic data[J]. Remote Sensing of Environment,2021,253. DOI:10.1016/j.rse. 2020.112224
doi: 10.1016/j.rse. 2020.112224
|
34 |
CHEN J, WU T, ZOU D, et al. Magnitudes and patterns of large-scale permafrost ground deformation revealed by Sentinel-1 InSAR on the central Qinghai-Tibet Plateau[J]. Remote Sensing of Environment, 2022, 268. DOI: 10.1016/j.rse.2021.112778
doi: 10.1016/j.rse.2021.112778
|
35 |
LIU S, ZHAO L, WANG L, et al. Intra-annual ground surface deformation detected by site observation, simulation and InSAR monitoring in permafrost site of Xidatan, Qinghai-Tibet Plateau[J]. Geophysical Research Letters, 2022, 49(3). DOI: 10.1029/2021GL095029
doi: 10.1029/2021GL095029
|
36 |
COHEN-WAEBER J, BURGMANN R, CHAUSSARD E, et al. Spatiotemporal patterns of precipitation-modulated landslide deformation from independent component analysis of InSAR time series[J]. Geophysical Research Letters, 2018, 45(4): 1878-1887.
|
37 |
WANG J, LU Z, GREGG P. Inflation of okmok volcano during 2008-2020 from ps analyses and source inversion with Finite Element models[J]. Journal of Geophysical Research-Solid Earth, 2021, 126(10). DOI: 10.1029/2021J B022420
doi: 10.1029/2021J B022420
|
38 |
ZHANG Jinjiang, JI Jianqing, ZHONG Dalai, et al. The tectonic pattern and formation process of Namche Barwa syntaxis in east Himalaya[J]. Science in China(Ser D), 2003(4): 373-83.
|
38 |
张进江, 季建清, 钟大赉, 等. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑:地球科学), 2003(4): 373-83.
|
39 |
DONG Hanwen, XU Zhiqin, CAO Hui, et al. Comparison of eastern and western boundary faults of eastern Himalayan syntaxis,and its tectonic evolution[J]. Earth Science,2018,43(4): 933-51.
|
39 |
董汉文, 许志琴, 曹汇, 等. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程[J]. 地球科学, 2018, 43(4): 933-951.
|
40 |
DING Lin, ZHONG Dalai, PAN Yusheng, et al. Fission track evidence of rapid uplift in the eastern Himalayan structure[J]. Chinese Science Bulletin,1995,40(16):1497-1500.
|
40 |
丁林, 钟大赉,潘裕生,等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报,1995,40(16):1497-1500.
|
41 |
BURG J P, NIEVERGELT P, OBERLI F, et al. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding[J]. Journal of Asian Earth Sciences, 1998, 16(2-3): 239-252.
|
42 |
XU Z Q, JI S C, CAI Z H, et al. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology [J]. Gondwana Research, 2012, 21(1): 19-36.
|
43 |
LIU Yunhua, SHAN Xinjian, ZHANG Yingfeng, et al. Use of seismic waveforms and InSAR data for determination of the seismotectonics of the Mainling Ms6. 9 earthquake on NOV.18,2017[J]. Seismology and Geology, 2018, 40(6): 1254-75.
|
43 |
刘云华, 单新建, 张迎峰, 等. 基于地震波及InSAR数据的2017年11月18日西藏米林M_S6.9地震发震构造[J]. 地震地质, 2018, 40(6): 1254-1275.
|
44 |
LI Baokun, DIAO Guiling, XU Xiwei, et al. Redetermination of the source parameters of the Zayü, Tibet M8. 6 earthquake sequence in 1950[J]. Chinese Journal of Geophysics, 2015, 58 (11): 4254-4265.
|
44 |
李保昆, 刁桂苓, 徐锡伟, 等. 1950年西藏察隅M8.6强震序列震源参数复核[J]. 地球物理学报, 2015, 58(11): 4254-4265.
|
45 |
ZHANG Langping, SHAO Zhigang, YAN Rui. Study on the characteristics of seismic activity in southeastern Tibet and surrounding areas[J]. Earthquake, 2011, 31(3):9-18.
|
45 |
张浪平, 邵志刚, 晏锐. 藏东南及周边地区地震活动特征研究[J]. 地震, 2011, 31(3): 9-18.
|
46 |
Rosen P A, Gurrola E, Sacco G F,et al. The InSAR scientific computing environment[C]∥ EUSAR 2012;9th European Con-ference on Synthetic Aperture Radar. VDE,2012:730-733.
|
47 |
HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514: 1-13.
|
48 |
LI Yuanqian, ZHANG Yi, SU Xiaojun, et al. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique[J]. National Remote Sensing Bulletin, 2021, 25(2): 677-690.
|
48 |
李媛茜, 张毅, 苏晓军, 等. 白龙江流域潜在滑坡InSAR识别与发育特征研究[J]. 遥感学报, 2021, 25(2): 677-690.
|
49 |
XIE Chao. A study on tectonic Geomorphology of Namche Barwa and activity of the faults[D]. Beijing: Institute of Geology,China Earthquake Administrator, 2018.
|
49 |
谢超. 南迦巴瓦地区构造地貌及断裂活动特征[D]. 北京: 中国地震局地质研究所, 2018.
|
50 |
PATZELT A, LI H M, WANG J D, et al. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: Evidence for the extent of the northern margin of India prior to the collision with Eurasia [J]. Tectonophysics, 1996, 259(4): 259-284.
|
51 |
DEWEY J F, CANDE S, PITMAN W C. Tectonic evolution of the India Eurasia collision zone[J]. Eclogae Geologicae Helvetiae, 1989, 82(3): 717-734.
|
52 |
YIN Fengling, HAN Libo, JIANG Changsheng, et al. Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults[J]. Chinese Journal of Geophysics, 2018,61(8): 3185-3197
|
52 |
尹凤玲,韩立波,蒋长胜, 等.2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响[J].地球物理学报,2018,61(8):3185-3197.
|
53 |
GENG Q R, PAN G T, ZHENG L L, et al. The Eastern Himalayan syntaxis: Major tectonic domains, ophiolitic melanges and geologic evolution[J]. Journal of Asian Earth Sciences, 2006, 27(3): 265-285.
|