遥感技术与应用 2023, Vol. 38 Issue (5): 1136-1147 DOI: 10.11873/j.issn.1004-0323.2023.5.1136 |
遥感应用 |
|
|
|
|
基于MODIS数据的青藏高原遥感云量重构 |
周厚瑀1,2( ),董庆1,3( ),孟德利1,2,赵文博1,2,边民1,2 |
1.中国科学院空天信息创新研究院 数字地球重点实验室,北京 100094 2.中国科学院大学,北京 100049 3.中科卫星应用德清研究院 浙江省微波目标特性测量与遥感重点实验室,浙江 湖州 313200 |
|
Reconstruction of Remote Sensing Cloud Cover over Tibetan Plateau based on MODIS Data |
Houyu ZHOU1,2( ),Qing DONG1,3( ),Deli MENG1,2,Wenbo ZHAO1,2,Min Bian1,2 |
1.Laboratory of Digital Earth Science,Aerospace Information Research Institute,CAS,Beijing 100094 China 2.University of Chinese Academy of Sciences,Beijing 100049,China 3.Key Laboratory of Target Microwave Properties of Zhejiang,Deqing Academy of Satellite Applications,Huzhou 313200,China |
引用本文:
周厚瑀,董庆,孟德利,赵文博,边民. 基于MODIS数据的青藏高原遥感云量重构[J]. 遥感技术与应用, 2023, 38(5): 1136-1147.
Houyu ZHOU,Qing DONG,Deli MENG,Wenbo ZHAO,Min Bian. Reconstruction of Remote Sensing Cloud Cover over Tibetan Plateau based on MODIS Data. Remote Sensing Technology and Application, 2023, 38(5): 1136-1147.
链接本文:
http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1136
或
http://www.rsta.ac.cn/CN/Y2023/V38/I5/1136
|
1 |
SEAGER R, NAIK N, VECCHI G A.Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming[J]. Journal of Climate, 2010, 23(17): 4651-4668.
|
2 |
CHEN H, ZHU Q, PENG C, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai‐Tibetan P lateau[J]. Global Change Biology, 2013, 19(10): 2940-2955.
|
3 |
DUAN A, XIAO Z. Does the climate warming hiatus exist over the Tibetan Plateau? [J]. Scientific Reports, 2015, 5(1): 1-9.
|
4 |
TANG Qiuhong, LIU Yubo, ZHANG Chi, et al. Research Progress on water vapor source change of precipitation in Qinghai‐Tibetan Plateau and its surrounding areas [J] Transactions of Atmospheric Sciences, 2020, 43(6):1002-1009.
|
4 |
汤秋鸿, 刘宇博, 张弛, 等. 青藏高原及其周边地区降水的水汽来源变化研究进展[J]. 大气科学学报, 2020,43(6):1002-1009.
|
5 |
ZHANG Xueqin, PENG Lili, ZHENG Du, et al. Temporal and spatial variation of total cloud cover over Qinghai‐Tibetan Plateau from 1971 to 2004 and its influencing factors [J] Acta Geographica Sinica, 2007,62(9): 959-969.
|
5 |
张雪芹, 彭莉莉, 郑度, 等. 1971-2004年青藏高原总云量时空变化及其影响因子[J]. 地理学报, 2007,62(9): 959-969.
|
6 |
HARRISON E F, MINNIS P, BARKSTROM B R, et al. Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D11): 18687-18703.
|
7 |
DAI Jiaxian. The Climate of the Qinghai-Xizang Plateau. Beijing: China Meteorological Press[M]. Beijing: Meteorological Publishing House,1990:215-221.戴加冼.青藏高原气候. 北京: 气象出版社, 1990:215-221.
|
8 |
YOU Q, JIAO Y, LIN H, et al. Comparison of NCEP/NCAR and ERA‐40 total cloud cover with surface observations over the Tibetan Plateau[J]. International Journal of Climatology, 2014, 34(8): 2529-2537.
|
9 |
BAO S, LETU H, ZHAO J, et al. Spatiotemporal distributions of cloud parameters and their response to meteorological factors over the Tibetan Plateau during 2003–2015 based on MODIS data[J]. International Journal of Climatology, 2019, 39(1): 532-543.
|
10 |
MA Q R, YOU Q L, MA Y J, et al. Changes in cloud amount over the Tibetan Plateau and impacts of large-scale circulation[J]. Atmospheric Research, 2021, 249: 105332.
|
11 |
CHEN Shaoyong, DONG Anxiang. Climate change and stability of total cloud cover over the Qinghai Xizang Plateau [J] Arid Zone Research, 2006,23(2): 327-333.
|
11 |
陈少勇, 董安祥, 青藏高原总云量的气候变化及其稳定性[J]. 干旱区研究, 2006,23(2):327-333.
|
12 |
NORRIS J R, ALLEN R J, EVAN A T, et al. Evidence for climate change in the satellite cloud record[J]. Nature, 2016, 536(7614): 72-75.
|
13 |
ZHANG Dejie, SHI Chunxiang, ZHANG Tao, et al. Comparative analysis of total cloud cover products from various data in China[J] Plateau Meteorology: 2022, 41(3): 803-813.张德杰, 师春香, 张涛, 等. 多种资料的总云量产品在中国区域的对比分析[J]. 高原气象, 2022, 41(3): 803-813.
|
14 |
DUAN A, WU G. Change of cloud amount and the climate warming on the Tibetan Plateau[J]. Geophysical Research Letters,2006,33(22):L22704. DOI:10.1029/2006GL027946
doi: 10.1029/2006GL027946
|
15 |
WANG J, DAI A, MEARS C. Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements[J]. Journal of Climate, 2016, 29(14): 5205-5222.
|
16 |
LI J, MAO J, WANG F. Comparative study of five current reanalyses in characterizing total cloud fraction and top‐of‐the‐atmosphere cloud radiative effects over the Asian monsoon region[J]. International Journal of Climatology, 2017, 37(15): 5047-5067.
|
17 |
MA J, WU H, WANG C, et al. Multiyear Satellite and Surface Observations of Cloud Fraction over China[J]. Journal of Geophysical Research Atmospheres, 2014, 119(12):7655-7666.
|
18 |
KOTARBA A Z. A Comparison of MODIS-derived cloud amount with visual surface observations[J]. Atmospheric Research, 2009,92(4): 522–530.
|
19 |
LIU Jian. Comparative analysis of three satellite cloud cover data in the Qinghai Tibet Plateau[J]. Journal of Remote Sensing,2021,25(7):1445-1459.
|
19 |
刘健.三种卫星云量数据在青藏高原地区的比对分析[J].遥感学报,2021,25(7):1445-1459.
|
20 |
LIU X, CHEN B. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2000, 20(14): 1729-1742.
|
21 |
ZHANG G, YAO T, XIE H, et al. Increased mass over the Tibetan Plateau: from lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10):2125-2130.
|
22 |
KING M D, PLATNICK S, MENZEL W P, et al. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua Satellites[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(7):3826-3852.
|
23 |
PLATNICK S, MEYER K G, KING M D, et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua[J].IEEE Transactions on Geoscience and Remote Sensing,2016,55(1): 502-525.
|
24 |
HERSBACH H, BELL B, BERRISFORD P, et al.The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society,2020,146(730):1999–2049.
|
25 |
LIU Z Q, SHI C X, ZHOU Z J, et al. CMA global reanalysis (CRA-40): Status and plans[C]∥Proc. 5th International Conference on Reanalysis. Rome, Italy: Nat. Meteor. Int. Canter, 2017: 13-17.
|
26 |
ZHAO D, ZHANG L, ZHOU T, et al. Contributions of local and remote atmospheric moisture fluxes to East China Precipitation estimated from CRA-40 reanalysis[J]. Meteorol. Res,2021,35(1):32-45.
|
27 |
KANG Xiaowei, FENG Zhongkui. Aster GDEM data introduction and program reading[J]. Remote Sensing Information,2011(6): 69-72.康晓伟,冯钟葵. ASTER GDEM数据介绍与程序读取[J].遥感信息,2011,(6):69-72.
|
28 |
WEI Fengying. Modern Climate Statistical Diagnosis and Prediction Technology(Second Edition)[M].Beijing:Meteorologi-cal Publishing House,2007:43-46
|
28 |
魏凤英.现代气候统计诊断与预测技术(第二版)[M].北京:气象出版社,2007:43-46.
|
29 |
YUAN Feiniu, ZHANG Lin, SHI Jinting, et al. Overview of theory and application of self coding Neural Network[J]. Chinese Journal of Computers,2019,42(1):203-230.
|
29 |
袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203-230.
|
30 |
SHENG Xia, SHI Yuli, DING Haiyong. Spatial downscaling of GPM precipitation over the Tibetan Plateau[J]. Remote Sensing Technology and Application,2021,36(3):571-580.
|
30 |
盛夏,石玉立,丁海勇.青藏高原GPM降水数据空间降尺度研究[J].遥感技术与应用,2021,36(3):571-580.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|