Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1192-1202    DOI: 10.11873/j.issn.1004-0323.2023.5.1192
遥感应用     
基于Sentinel-2影像的南四湖菹草群落遥感提取研究
姜杰1,2(),于泉洲1(),牛振国3,梁春玲4,高玉国5,张玲6,张宏立1
1.聊城大学 地理与环境学院,山东 聊城 252059
2.河南大学 地理与环境学院,河南 开封 475004
3.中国科学院空天信息创新研究院 遥感科学国家重点实验室,北京 100094
4.商丘师范学院 测绘与规划学院,河南 商丘 476000
5.济宁市南四湖自然保护区服务中心,山东 济宁 272019
6.济宁市港航事业发展中心任城港航服务站,山东 济宁 272072
Remote Sensing Extraction of Potamogeton crispus L. in Nansi Lake based on Sentinel-2
Jie JIANG1,2(),Quanzhou YU1(),Zhenguo NIU3,Chunling LIANG4,Yuguo GAO5,Ling ZHANG6,Hongli ZHANG1
1.School of Geography and Environment,Liaocheng University,Liaocheng 252059,China
2.College of Geography and Environmental Science,Henan University,Kaifeng 475004,China
3.Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
4.Department of Surveying and Planning,Shangqiu Normal University,Shangqiu,476000,China
5.Nansi Lake Nature Reserve Service Center,Jining 272019,China
6.Jining Port and Navigation Development Center,Rencheng Port and Navigation Service Station,Jining 272072,China
 全文: PDF(8227 KB)   HTML
摘要:

基于Sentinel-2遥感数据,选用最大似然监督分类法、随机森林机器学习分类法和基于时序NDVI的物候特征分类法等3种方法,对2021年5月初南四湖沉水植被(菹草群落)进行提取研究,利用同期实测的南四湖菹草群落面积和分布数据对3种方法的提取精度进行分析,结合菹草植被覆盖度分析3种方法对菹草的提取能力。结果表明:①不同方法提取的南四湖菹草群落总面积存在明显差异。监督分类和随机森林方法提取的2021年南四湖菹草群落面积均在100 km2以下,分别为98.97 km2和75.92 km2,基于时序NDVI的方法提取面积为207.44 km2,最接近实地调查的菹草面积。②无论是全湖还是核心区,监督分类和随机森林法的提取精度均75%左右,平均相对误差(MRE)在0.5左右,平均误差在20~30 km2左右,而基于时序NDVI的方法精度在90%以上,MRE和MEarea也最低。③对比植被覆盖度发现,监督分类和随机森林方法只能提取到近湖岸的植被覆盖度较高的菹草,对湖心区覆盖度较低的菹草提取效果差,而时序NDVI的方法对低植被覆盖度菹草群落更敏感,是菹草遥感提取的有效方法。本研究对于创新沉水植被遥感提取方法和指导湖泊生态环境遥感监测具有一定的参考价值。

关键词: 南四湖植被覆盖度遥感提取菹草群落Sentinel?2    
Abstract:

Based on Sentinel-2 remote sensing data, we selected three methods, including Supervised Classification (Maximum Likelihood Classification), Machine Learning Classification (Random Forest Classification) and Phenological Feature Classification based on time-series NDVI, to extract Potamogeton crispus L.community in Nansi Lake in early May 2021. By using the measured area and distribution data of the Potamogeton crispus L. community in Nansi Lake, we analyzed the classification accuracy of the three methods during the same period, and analyzed the extraction effects of the three methods for Potamogeton crispus L. in combination with the Fractional Vegetation Cover (FVC). The results showed that (1) there was a significant difference in the total area of the Potamogeton crispus L. extracted by three methods. The areas of the Potamogeton crispus L. community extracted by both Supervised Classification and Random Forest Classification were less than 100 km2, which were 98.97 km2 and 75.92 km2 respectively. While the area extracted by the time-series NDVI method was 207.44 km2, which was closest to the measured area of Potamogeton crispus L. (2) Both the whole lake and the core area, the extraction accuracy of Supervised Classification and Random Forest Classification was just about 75%, the Mean Relative Error (MRE) was about 0.5, and Mean Error (MEarea) was about 20~30 km2, while the accuracy of the time-series NDVI method was above 90% and the MRE and MEarea were also the lowest. (3) Comparing the fractional vegetation cover, we found that Supervised Classification and Random Forest Classification could only extract the Potamogeton crispus L. with high fractional vegetation cover near the lake shore and poorly with low cover in the lake core area, while the time-series NDVI method was more sensitive to the low fractional vegetation cover Potamogeton crispus L. community and could extract it well in different areas of the whole lake, which is a potential method for Potamogeton crispus L. remote sensing extraction. This study has some theoretical value for innovative remote sensing extraction methods of submerged vegetation and guiding remote sensing monitoring of lake ecological environment.

Key words: Nansi Lake    Fractional vegetation cover    Remote sensing extraction    Potamogeton crispus L. community    Sentinel-2
收稿日期: 2022-05-15 出版日期: 2023-11-07
ZTFLH:  Q941  
基金资助: 国家自然科学基金项目(31800367);山东省自然科学基金项目(ZR2023MD129);河南省高等学校青年骨干教师培养计划资助项目(2021GGJS134)
通讯作者: 于泉洲     E-mail: jiangjie1592020@163.com;yuquanzhou2008@126.com
作者简介: 姜 杰(1998-),女,山东武城人,博士研究生,主要从事湿地遥感研究。E?mail: jiangjie1592020@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姜杰
于泉洲
牛振国
梁春玲
高玉国
张玲
张宏立

引用本文:

姜杰,于泉洲,牛振国,梁春玲,高玉国,张玲,张宏立. 基于Sentinel-2影像的南四湖菹草群落遥感提取研究[J]. 遥感技术与应用, 2023, 38(5): 1192-1202.

Jie JIANG,Quanzhou YU,Zhenguo NIU,Chunling LIANG,Yuguo GAO,Ling ZHANG,Hongli ZHANG. Remote Sensing Extraction of Potamogeton crispus L. in Nansi Lake based on Sentinel-2. Remote Sensing Technology and Application, 2023, 38(5): 1192-1202.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1192        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1192

图1  研究区标准假彩色示意图
波段

中心波长

/nm

空间分辨率

/m

波段宽度

/nm

B1(Coastal aerosol)4436020
B2 (Blue)4901065
B3(Green)5601035
B4 (Red)6651030
B5 (Vegetation Red Edge)7052015
B6 (Vegetation Red Edge)7402015
B7 (Vegetation Red Edge)7832020
B8(NIR)84210115
B 8A(Narrow NIR)8652020
B 9(Water vapour)9456020
B10(SWIR Cirrus)1 3756020
B11(SWIR)1 6102090
B12(SWIR)2 19020180
表1  Sentinel-2 数据各波段信息[18]
图2  南四湖主要地物类型的NDVI时序特征[24]
图3  研究技术路线
分类方法全湖区域/km2核心区域/km2
监督分类98.9778.59
随机森林75.9261.57
时序NDVI207.44145.64
实测面积254.39236.44
表2  不同方法的菹草面积提取结果
图4  不同方法在全湖和微山湖局部的提取结果
图5  不同方法的提取面积与实测面积的对比
分类方法区域/km2生产者精度MREMEarea/km2
监督分类全湖75.78%0.446 019.99
核心73.46%0.547 834.56
随机森林全湖74.82%0.458 421.74
核心72.67%0.535 037.21
时序NDVI全湖94.85%0.328 111.02
核心94.19%0.425 325.46
表3  不同提取方法的精度对比
图6  不同方法提取的菹草区域的FVC分布
图7  不同方法提取的不同区域菹草群落FVC统计
1 SMITH V H, DAVID W S. Eutrophication science: Where do we go from here? [J]. Trends in Ecology and Evolution, 2009, 24(4): 201-207. DOI: 10.1016/j.tree.2008.11.009
doi: 10.1016/j.tree.2008.11.009
2 YANG Guishan, MA Ronghua, ZHANG Lu, et al. Lake status, major problems and protection strategy in China[J]. Journal of Lake Science, 2010, 22(6): 799-810.
2 杨桂山,马荣华,张路,等.中国湖泊现状及面临的重大问题与保护策略[J].湖泊科学,2010, 22(6): 799-810.
3 GU Xiaohong, MAO Zhigang, DING Huiping, et al. Progress and prospect of lake fishery in China [J]. Journal of Lake Science, 2018, 30(1): 1-14.
3 谷孝鸿,毛志刚,丁慧萍,等.湖泊渔业研究:进展与展望[J].湖泊科学,2018, 30(1): 1-14.
4 REN Jiuchang, QIAO Jianrong, DONG Wei, et al. Study on ecological habits of Potamogeton crisp us and its growth in Jing-Mi cannal, Beijing [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1997, 33(6): 72-78.
4 任久长,乔建荣,董巍,等.菹草(Potamogeton crispus)的生态习性和在京密引水渠的发生规律研究[J].北京大学学报(自然科学版),1997, 33(6): 72-78.
5 ZHANG Jinlu, DUAN Dengxuan X, WANG Zhizhong, et al. The hazard of Potamogeton crispus decline in Dongping Lake and its control measures [J]. Environmental Study and Monitoring, 2009(2): 31-33.
5 张金路,段登选,王志忠.东平湖菹草大面积衰亡的危害及防治对策[J].环境研究与监测,2009(2): 31-33.
6 ZHANG Ju, DENG Huanguang, WU Aiqin, et al. Decomposition of Potamogeton crispus and its effect on the aquatic environment of Dongping Lake[J]. Acta Scientiae Circumstantiae, 2013, 33(9): 2590-2596.
6 张菊,邓焕广,吴爱琴,等.东平湖菹草腐烂分解及其对水环境的影响[J].环境科学学报,2013, 33(9): 2590-2596.
7 HUA Zulin, ZHU Xiang, SHEN Jian, et al. Response of water quality to different growth periods of Potamogeton crispus in Luoma Lake[J]. Water Resources Protection, 2019, 35(2): 25-31.
7 华祖林,朱翔,沈健,等.骆马湖水质对菹草不同生长期的响应研究[J].水资源保护,2019, 35(2): 25-31.
8 GAO Jixi, ZHAO Shaohua, HOU Peng. Advances of remote sensing on ecology and environment in China [J]. Journal of Geo-Information Science, 2020, 22(4): 705-719.
8 高吉喜,赵少华,侯鹏.中国生态环境遥感四十年[J].地球信息科学学报,2020, 22(4): 705-719.
9 ARMSTRONG R A. Remote sensing of submerged vegetation canopies for biomass estimation[J]. International Journal of Remote Sensing,1993, 14(3): 621-628. DOI: 10.1080/01431169308904363
doi: 10.1080/01431169308904363
10 SANTOS M J, KHANNA S, Hestir E L, et al. Measuring landscape-scale spread and persistence of an invaded submerged plant community from airborne remote sensing[J]. Ecological Applications,2016, 26(6): 1733-1744. DOI: 10.1890/15-0615
doi: 10.1890/15-0615
11 YUAN L, ZHANG L Q. The spectral responses of a submerged plant Vallisneria spiralis with varying biomass using spectroradiometer[J]. Hydrobiologia,2007, 579(1): 291-299. DOI:10.1007/s10750-006-0444-1
doi: 10.1007/s10750-006-0444-1
12 SHI Hao, LI Xuwen, NIU Zhichun, et al. Remote sensing information extraction of aquatic vegetation in Lake Taihu based on Random Forest Model [J]. Journal of Lake Science, 2016, 28(3):635-644.
12 侍昊,李旭文,牛志春,等.基于随机森林模型的太湖水生植被遥感信息提取[J].湖泊科学,2016, 28(3):635-644.
13 JAKUBAUSKAS M, KINDSCHER K, Fraser A, et al. Close-range remote sensing of aquatic macrophyte vegetation cover[J]. International Journal of Remote Sensing,2000, 21(18): 3533-3538.
14 YU Quanzhou, ZHANG Zulu, GAO Bin, et al. Study on the changes of landscape pattern in Nansihu wetland based on RS and FRAGSTATS [J]. Forest Resources Management, 2013(1):108-115.
14 于泉洲,张祖陆,高宾,等.基于RS和FRAGSTATS的南四湖湿地景观格局演变研究[J].林业资源管理,2013(1):108-115.
15 YU Quanzhou, ZHANG Zulu, YUAN Yi. Preliminary study in wetland vegetation and its carbon storage of Nansihu lake in Shandong Province[J]. Yunnan Geographic Environment Research, 2010, 27(5):88-93.
15 ]于泉洲,张祖陆,袁怡.山东省南四湖湿地植被碳储量初步研究[J].云南地理环境研究,2010, 27(5):88-93.
16 LIANG Lili, YU Quanzhou, DENG Huanguang, et al. Spatio-temporal pattern of Potamogeton crispus L.in Lake Dongping based on NDVl time series [J]. Journal of Lake Science, 2019, 31(2):529-538.
16 梁莉莉,于泉洲,邓焕广,等.基于时序NDVI的东平湖菹草(Potamogeton crispus L.)遥感提取及时空格局[J].湖泊科学,2019, 31(2):529-538.
17 TIAN Yin, CHEN Zhuoqi, HUI Fengming, et al. ESA Sentinel-2A/B satellite:Characteristics and applications[J]. Journal of Beijing Normal University (Natural Science Edition), 2019, 55(1):57-65.
17 田颖,陈卓奇,惠凤鸣,等. 欧空局哨兵卫星Sentinel-2A/B数据特征及应用前景分析[J]. 北京师范大学学报(自然科学版), 2019, 55(1):57-65.
18 European Space Agency. Sentinel-2 user handbook [EB/OL]. (2015-07-24) [2018-03-02]. .
19 LI Xiaohui, WANG Hong, LI Xiaobing, et al. Study on crops remote sensing classification based on multi-temporal Landsat-8 OLI images [J]. Remote Sensing Technology and Application, 2019, 34(2):389-397.
19 李晓慧,王宏,李晓兵,等.基于多时相Landsat-8 OLI影像的农作物遥感分类研究[J].遥感技术与应用,2019, 34(2):389-397.
20 LI Henkai, WANG Lijuan, XIAO Songsong. Random forest classification of land use in hilly and mountaineous areas of southern China using multi-source remote sensing data [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):244-251.
20 李恒凯,王利娟,肖松松.基于多源数据的南方丘陵山地土地利用随机森林分类[J].农业工程学报,2021, 37(7):244-251.
21 HOU Mengjing, YIN Jianpeng, GE Jing, et al. Land cover remote sensing classification method of alpine wetland region based on random forest algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7):220-227.
21 侯蒙京,殷建鹏,葛静,等.基于随机森林的高寒湿地地区土地覆盖遥感分类方法[J].农业机械学报,2020, 51(7):220-227.
22 LIU Mingxing, LIU Jianhong, MA Minfei, et al. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province [J]. Remote Sensing for Natural Resources, 2022, 34(1):218-229.
22 柳明星,刘建红,马敏飞,等.基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J].自然资源遥感,2022, 34(1): 218-229.
23 GUO Yushan, LIU Qingsheng, LIU Gaohuan, et al. Extraction of main crops in Yellow River delta based on MODIS NDVI time series [J]. Journal of Natural Resources, 2017, 32(10):1808-1818.
23 郭昱杉,刘庆生,刘高焕,等.基于MODIS时序NDVI主要农作物种植信息提取研究[J].自然资源学报,2017, 32(10):1808-1818.
24 JIAO Yinhe, YU Quanzhou, LIU Enfeng, et al. The characteristics of and causes to spatiotemporal evolution Potamogeton crispus L. community in Nansi Lake based on remote sensing data [J]. Forest Resources Management,2020(1):70-78,91.
24 焦银合,于泉洲,刘恩峰,等.基于遥感的南四湖菹草群落时空演变特征及其原因分析[J].林业资源管理,2020(1):70-78,91.
25 KE Han. Research on relationship among submerged, floating plant community structure and water environmental factors [D]. Ji'nan: Shandong University,2014.客涵.南四湖沉水、浮叶植物群落结构与水环境因子相关研究[D].济南:山东大学,2014.
26 GAO Yonggang, XU Hanqiu. Estimation of multi-scale urban vegetation coverage based on multi-source remote sensing images [J]. Journal of Infrared and Millimeter Waves, 2017, 36(2):225-234.
26 高永刚,徐涵秋.基于多源遥感影像的多尺度城市植被覆盖度估算[J].红外与毫米波学报,2017, 36(2):225-234.
27 PI Xinyu, ZENG Yongnian, HE Chengqiang. High-resolution urban vegetation coverage estimation based on multi-source remote sensing data fusion [J]. National Remote Sensing Bulletin, 2021, 25(6):1216-1226.
27 皮新宇,曾永年,贺城墙.融合多源遥感数据的高分辨率城市植被覆盖度估算[J].遥感学报,2021, 25(6):1216-1226.
28 GAO L, WANG X F, JOHNSON B A, et al. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,159:364-377. DOI: 10.1016/j.isprsjprs.2019.11.018
doi: 10.1016/j.isprsjprs.2019.11.018
29 YI S H, ZHOU Z Y, REN S L, et al. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau[J].Environmental Research Letters,2011, 6(4): 045403. DOI: 10.1088/1748-9326/6/4/045403
doi: 10.1088/1748-9326/6/4/045403
30 SONG W J, MU X H, RUAN G Y, et al. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,58:168-176. DOI: 10.1016/j.jag.2017.01.015
doi: 10.1016/j.jag.2017.01.015
[1] 吴虹蓉,朱岚巍,余恒,施冬. 基于遥感的海南本岛植被覆盖度时空变化及其地形效应研究[J]. 遥感技术与应用, 2023, 38(5): 1062-1070.
[2] 刘胜威,彭代亮,陈俊杰,胡锦康,楼子杭,冯旭祥,程恩惠. 基于Sentinel-2影像的冬小麦收获面积测算[J]. 遥感技术与应用, 2023, 38(3): 544-557.
[3] 齐文栋,郑学昌,何黎明,卢珍,顾晓鹤,周艳兵. 基于多时相Sentinel-2影像的棉花雹灾时序变化遥感监测[J]. 遥感技术与应用, 2023, 38(3): 566-577.
[4] 黄仁杰,陈建军,林星辰,尤号田,韩小文. GEOV3和GLASS植被覆盖度产品在中国西南地区时空差异及其影响因子分析[J]. 遥感技术与应用, 2023, 38(3): 708-717.
[5] 张文志,杜梦豪,丁来中,杨森. 非洲Munyaka地区铁皮屋顶时空变化规律研究[J]. 遥感技术与应用, 2023, 38(3): 729-738.
[6] 乔树亭,叶回春,黄文江,黄珊瑜,刘荣豪,郭安廷,钱彬祥. 基于Sentinel-1/2影像的水稻种植面积提取方法研究[J]. 遥感技术与应用, 2023, 38(1): 78-89.
[7] 王蕊,拜得珍,尹芳,刘磊. 湟水流域2000—2019年植被变化趋势特征和延续性分析[J]. 遥感技术与应用, 2022, 37(6): 1504-1512.
[8] 郭佳炜,叶回春,聂超甲,崔贝,黄文江,刘付程,邹彦龙. 基于Sentinel-2的海南耕地复种指数监测及时空变化分析[J]. 遥感技术与应用, 2022, 37(5): 1128-1139.
[9] 杨仙保,张王菲,孙斌,高志海,李毅夫,王晗. 基于GEE和Sentinel-2时序数据的呼伦贝尔沙地及其周边植被类型识别研究[J]. 遥感技术与应用, 2022, 37(4): 982-992.
[10] 韦中晖,靳海亮,顾晓鹤,杨英茹,王庚泽,潘瑜春. 基于多时相协同变化检测的耕地撂荒遥感监测[J]. 遥感技术与应用, 2022, 37(3): 539-549.
[11] 史宜梦,刘希胜,朱文彬,宋宏利. 基于GEE云平台的黄河源区河流径流量遥感反演研究[J]. 遥感技术与应用, 2022, 37(1): 186-195.
[12] 李淑贞,徐大伟,范凯凯,陈金强,佟旭泽,辛晓平,王旭. 基于无人机与卫星遥感的草原地上生物量反演研究[J]. 遥感技术与应用, 2022, 37(1): 272-278.
[13] 王曦,张怡雯. 基于Landsat影像的北京植被覆盖度变化趋势分析[J]. 遥感技术与应用, 2021, 36(6): 1388-1397.
[14] 朱金明,李利伟,程钢,高连如,张兵. 基于Sentinel-2和全卷积网络的北京六环内高层建筑区提取与分析[J]. 遥感技术与应用, 2021, 36(6): 1436-1445.
[15] 梁爽,宫兆宁,赵文吉,关鸿亮,梁亚囡,陆丽,赵雪. 基于多季相Sentinel-2影像的白洋淀湿地信息提取[J]. 遥感技术与应用, 2021, 36(4): 777-790.