Please wait a minute...
img

官方微信

遥感技术与应用  2023, Vol. 38 Issue (5): 1239-1250    DOI: 10.11873/j.issn.1004-0323.2023.5.1239
遥感应用     
国产叶面积指数产品在中国区域的一致性检验
喻樾1(),张方敏1(),陈镜明2
1.南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心/ 江苏省农业气象重点实验室,江苏 南京 210044
2.多伦多大学地理与规划系,加拿大 多伦多 M5S 3G3
Comparative Analysis of Differences of Leaf Area Index Products in China
Yue YU1(),Fangmin ZHANG1(),Jingming CHEN2
1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/ Jiangsu Key Laboratory of Agricultural Meteorology,College of Applied Meteorology,Nanjing University of Information Science & Technology,Nanjing 210044,China
2.Department of Geography and Planning,University of Toronto,Toronto Canada M5S 3G3
 全文: PDF(5446 KB)   HTML
摘要:

叶面积指数是研究全球和区域碳循环、水文循环、气候变化区域响应的重要参数之一,研究不同LAI产品的时空一致性可为该地区LAI产品的使用提供建议和参考。本研究基于流域、DEM和土地利用类型,对GLOBMAP、GLOBALBNU、GLASS的LAI产品从平均值、频率以及差值频率等的变化进行统计,分析3种国产LAI产品在中国区域的一致性。主要结论为:①3种产品均可捕捉中国地区LAI的空间分布和月及年的时间变化特征,GLOBMAP在2001年更换数据源后年平均值开始下降。②3种产品在九大流域、不同DEM、不同地表利用类型分类下均存在差异。在海河流域、黄河流域和内陆河流域,3种产品的相关性较好,但是在长江流域、东南诸河流域以及珠江流域内产品间差值大于2.00的范围较多。2 000~4 000 m区域内3种产品的年均变化趋势区别存在明显不同。和其他产品相比,在草地区域GLASS较低,在城乡工业用地区域GLOBMAP较低,在林地区域GLOBALBNU较高。定量分析了3套国产LAI产品的时空差异,结果可为国产LAI产品在中国的应用提供科学参考。

关键词: 叶面积指数遥感一致性中国地区    
Abstract:

The Leaf Area Index(LAI) is one of the important parameters to study the global and regional carbon cycle, hydrological cycle, and regional response to climate change. Studying the temporal and spatial consistency of different products can provide suggestions and references for the use of LAI products in this region. This study made statistical analysis on the changes of the average value, frequency and difference frequency of GLOBMAP,GLOBALBNU and GLASS LAIs across different river basins,DEM and land use types. (1)The three products can clearly capture the spatial distribution, monthly and annual variation characteristics of LAI in China. Annual average GLOBMAP started to decline in 2001 since data sources changed. (2)There were differences among the three products under the nine major basins, different DEMs, and different land use types. In the Haihe River Basin, the Yellow River Basin and the Inland River Basin, the correlations of the three products were good, but in the Yangtze River basin, the Southeast River Basin and the Pearl River basin the differences between the three products were more than 2.00. There were obvious differences in the annual average change trends of the three products in the 2 000~4 000 m area. Compared with other products, GLASS was underestimated in grassland areas, GLOBMAP was underestimated compared in urban and rural industrial land areas, and GLOBALBNU was overestimated in forest land areas. The temporal and spatial differences of three sets of domestic LAI products were quantitatively analyzed, and the results could provide scientific reference for the application of domestic LAI products in China.

Key words: Leaf Area Index(LAI)    Remote sensing    Consistency    China region
收稿日期: 2022-06-17 出版日期: 2023-11-07
ZTFLH:  Q948  
基金资助: 国家重点研发计划(2018YFC1506606);江苏省碳达峰中和科技创新专项资金(BK20220017)
通讯作者: 张方敏     E-mail: 785572282@qq.com;fmin.zhang@nuist.edu.cn
作者简介: 喻 樾(1998-),男,浙江湖州人,硕士研究生,主要从事定量遥感研究。E?mail:785572282@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
喻樾
张方敏
陈镜明

引用本文:

喻樾,张方敏,陈镜明. 国产叶面积指数产品在中国区域的一致性检验[J]. 遥感技术与应用, 2023, 38(5): 1239-1250.

Yue YU,Fangmin ZHANG,Jingming CHEN. Comparative Analysis of Differences of Leaf Area Index Products in China. Remote Sensing Technology and Application, 2023, 38(5): 1239-1250.

链接本文:

http://www.rsta.ac.cn/CN/10.11873/j.issn.1004-0323.2023.5.1239        http://www.rsta.ac.cn/CN/Y2023/V38/I5/1239

产品名称时间分辨率空间分辨率数据源覆盖时间算法
GLOBALBNU[12]8 d1 kmMODIS LAI2000~2020年时空滤波
GLOBMAP[13]8 d/16 d0.08°

MODIS反射率、

AVHRR GIMMS NDVI

1981~2020年几何模型
GLASS[14]8 d0.05°AVHRR/MODIS反射率1981~2018年神经网络
表1  本文采用的3种LAI产品的信息
图1  中国九大流域及DEM分布
图2  GLASS LAI产品的完整度
图3  LAI产品在中国植被区的变化
图4  不同DEM下3种LAI产品的年平均值随时间的变化
产品土地利用类型平均值绝对距平标准差
GLASS耕地1.09±0.080.07±0.040.66±0.06
林地2.01±0.060.05±0.040.93±0.04
草地0.52±0.030.03±0.020.31±0.02
城乡工业用地0.96±0.070.06±0.030.61±0.04
未利用土地0.13±0.010.01±0.010.08±0.01
GLOBMAP耕地1.05±0.090.06±0.050.58±0.16
林地2.20±0.110.14±0.090.90±0.16
草地0.60±0.050.09±0.030.31±0.06
城乡工业用地0.87±0.080.06±0.050.50±0.11
未利用土地0.32±0.060.09±0.020.18±0.02
GLOBALBNU耕地1.09±0.120.10±0.070.72±0.06
林地1.73±0.160.13±0.090.90±0.05
草地0.62±0.050.04±0.030.59±0.01
城乡工业用地0.97±0.090.07±0.050.26±0.04
未利用土地0.30±0.020.02±0.010.22±0.02
表2  不同土地利用类型下3种LAI产品的统计
流域GLOBALBNU与GLASSGLOBALBNU与GLOBMAPGLOBMAP与GLASS
松辽流域0.67**0.76**0.43**
海河流域0.76**0.94**0.76**
黄河流域0.88**0.71**0.68**
淮河流域0.350.77**0.44**
长江流域0.300.76**0.05
东南诸河流域0.110.62**0.10
珠江流域0.55*0.86**0.54**
西南诸河流域0.07-0.07-0.23
内陆河流域0.75**0.01-0.69**
表3  LAI产品在九大流域的相关性
图5  不同土地利用类型下3种产品的频率分布
图6  LAI产品的平均差值的空间分布
图7  LAI产品的差值频率分布
图8  LAI产品在中国九大流域的年平均变化
图9  3种产品在各流域下的差值频率分布(x、y、z分别为GLASS-GLOBMAP、GLOBALBNU-GLASS、GLOBALBNU-GLOBMAP差值频率最大时的差值)
图10  3种LAI产品在长江流域和东南诸河流域生长季和非生长季的差值分布
图11  三种产品在长江流域生长季的密度散点图
  中国汛情动态预警监测综合服务平台
1 LIU Yibo, JU Weiming, CHEN Jingming, et al. Spatial and temporal variations of forest LAI in China during 2000~2010[J]. Chinese Science Bulletin, 2012, 57(16):1435-1445.
1 柳艺博, 居为民, 陈镜明, 等. 2000~2010年中国森林叶面积指数时空变化特征[J]. 科学通报, 2012, 57(16):1435-1445.
2 ZENG Yelu, LI Jing, LIU Qinhuo. Review article: Global LAI ground validation dataset and product validation framework[J]. Advances in Earth Science, 2012, 27(2):165-174.
2 曾也鲁, 李静, 柳钦火. 全球LAI地面验证方法及验证数据综述[J]. 地球科学进展, 2012, 27(2):165-174.
3 FANG Hongliang. Development and validation of satellite Leaf Area Index(LAI)products in China[J]. Remote Sensing Technology and Application, 2020, 35(5):990-1003.
3 方红亮. 我国叶面积指数卫星遥感产品生产及验证[J]. 遥感技术与应用, 2020, 35(5):980-1003.
4 FANG Hongliang. Scaling effects of the true and effective Leaf Area Index (LAI And LAIe) and Clumping Index (CI)[J]. Journal of Geo-information Science, 2021,23(7): 1155-1168.
4 方红亮.真实和有效叶面积指数及聚集指数的尺度效应[J].地球信息科学学报,2021,23(7):1155-1168.
5 MYNENI R B, HOFFMAN S, KNYAZIKHIN Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Environment, 2002, 83(1-2):214-231. DOI:10.1016/S0034-4257(2)00074-3
doi: 10.1016/S0034-4257(2)00074-3
6 GANGULY S, SCHULL M A, SAMANTA A, et al. Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory[J]. Remote Sensing of Environment, 2008, 112(12):4333-4343. DOI:10.1016/j.rse.2008.07.014
doi: 10.1016/j.rse.2008.07.014
7 BARET F, HAGOLLE O, GEIGER B, et al. LAI, FAPAR and FCOVER CYCLOPES global products derived from Vegetation: Part 1: Principles of the algorithm[J]. Remote Sensing of Environment, 2009, 110(3):275-286. DOI:10.1016/j.rse.2007.02.018
doi: 10.1016/j.rse.2007.02.018
8 BARET F, WEISS M, LACAZE R, et al. GEOV1:LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production[J]. Remote Sensing of Environment,2013,137(10):299-309. DOI:10.1016/j.rse. 2012. 12.027
doi: 10.1016/j.rse. 2012. 12.027
9 MORISETTE J T, BARET F, PRIVETTE J L,et al.Validation of global moderate-resolution LAI products:A framework proposed within the CEOS land product validation subgroup[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1804-1817. DOI:10.1109/TGRS.2006.872529
doi: 10.1109/TGRS.2006.872529
10 HU J N, TAN B, SHABANOV N, et al. Performance of the MISR LAI and FPAR algorithm: A case study in Africa[J]. Remote Sensing of Environment,2003,88(3):324-340. DOI:10.1016/j.rse.2003.05.002
doi: 10.1016/j.rse.2003.05.002
11 BACOUR C, BARET F, BEAL D, et al. Neural network estimation of LAI, FAPAR, FCOVER and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation[J]. Remote Sensing of Environment, 2006, 105(4):313-325. DOI:10.1016/j.rse.2006.07.014
doi: 10.1016/j.rse.2006.07.014
12 YUAN H, DAI Y J, XIAO Z Q,et al.Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling-Science Direct[J]. Remote Sensing of Environment,2011,115(5):1171-1187. DOI:10.1016/j.rse. 2011. 01.001
doi: 10.1016/j.rse. 2011. 01.001
13 LIU R G, CHEN J M, LIU J Y, et al. Application of a new leaf area index algorithm to China's landmass using MODIS data for carbon cycle research[J]. Journal of Environmental Management, 2007, 85(3):649-658. DOI:10.1016/j.jenvman.2006.04.023
doi: 10.1016/j.jenvman.2006.04.023
14 XIAO Z Q, LIANG S L, WANG J D, et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,52(1):209-223. DOI:10.1109/TGRS. 2013. 2237780
doi: 10.1109/TGRS. 2013. 2237780
15 FANG H L, JIANG C Y, LI W J, et al. Characterization and intercomparison of global moderate resolution Leaf Area Index (LAI) products: Analysis of climatologies and theoretical uncertainties[J]. Journal of Geophysical Research:Biogeosciences, 2013, 118(2):529-548. DOI:10.1002/jgrg.20051
doi: 10.1002/jgrg.20051
16 GESSNER U, NIKLAUS M, KUENZER C, et al. Intercomparison of Leaf Area Index products for a gradient of sub-humid to arid environments in West Africa[J]. Remote Sensing, 2013, 5(3):1235-1257. DOI:10.3390/rs5031235
doi: 10.3390/rs5031235
17 MA Peipei, LI Jing, LIU Qinhuo, et al. 2019. Multisensor synergistic quantitative Leaf Area Index product of China[J]. Journal of Remote Sensing, 23(6):1232–1252.马培培, 李静, 柳钦火, 等. 中国区域 MuSyQ 叶面积指数产品验证与分析[J]. 遥感学报, 2019, 23(6):1232-1252.
18 XU B D, LI J, LIU Q H, et al. A methodology to estimate representativeness of LAI station observation for validation: A case study with Chinese Ecosystem Research Network (CERN) in situ data[C]∥ Land Surface Remote Sensing II, 2014, 9260:926023. DOI:10.1117/12.2068845
doi: 10.1117/12.2068845
19 YANG Yongshuai, LI Ainong, JIN Huaan, et al. Intercomparison among GEOV1, GLASS and MODIS LAI products over mountainous area in Southwestern China[J]. Remote Sensing Technology and Application, 2016, 31(3):438-450.
19 杨勇帅, 李爱农, 靳华安, 等. 中国西南山区 GEOV1, GLASS 和 MODIS LAI 产品的对比分析[J]. 遥感技术与应用, 2016, 31(3):438-450.
20 LIU Yuan, ZHOU Maichun. Comparison of MODIS, CYCLOPES and GLASS LAI over Hanjiang River basin[J]. Remote Sensing for Land and Resources, 2018, 30(1):14-21.
20 刘远, 周买春. MODIS, CYCLOPES 和 GLASS 3 种 LAI 产品在韩江流域的对比[J]. 国土资源遥感, 2018, 30(1):14-21.
21 YANG F, YANG J, WANG J L, et al. Assessment and validation of MODIS and GEOV1 LAI with ground-measured data and an analysis of the effect of residential area in mixed pixel[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(2):763-774. DOI:10.1109/JSTARS.2014.2340452
doi: 10.1109/JSTARS.2014.2340452
22 WANG D D, MORTON D, MASEK J, et al. Impact of sensor degradation on the MODIS NDVI time series[J]. Remote Sensing of Environment, 2012, 119:55-61. DOI:10.1016/j.rse.2011.12.001
doi: 10.1016/j.rse.2011.12.001
23 Lyapustin A, Wang Y, Xiong X, et al. Science impact of MODIS C5 calibration degradation and C6 + improvements[J]. Atmospheric Measurement Techniques, 2014, 7(12):4353-4365. DOI:10.5194/amtd-7-7281-2014
doi: 10.5194/amtd-7-7281-2014
24 FAN W L, CHEN J M, JU W M, et al. GOST: A geometric-optical model for sloping terrains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 9(52):5469-5482. DOI:10.1109/TGRS.2013.2289852
doi: 10.1109/TGRS.2013.2289852
25 WEN J G, LIU Q, XIAO Q, et al. Characterizing land surface anisotropic reflectance over rugged terrain: A review of concepts and recent developments[J]. Remote Sensing,2018, 10(3):370. DOI:10.3390/rs10030370
doi: 10.3390/rs10030370
26 FAN Weiliang, LI Jing, LIU Qinhuo. GOST2: The improvement of the canopy reflectance model GOST in separating the sunlit and shaded leaves[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1423-1431. DOI:10.1109/JSTARS.2015.2413994
doi: 10.1109/JSTARS.2015.2413994
27 GENG J, CHEN J M, FAN W L, et al. GOFP: A geometric-optical model for forest plantations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5230-5241. DOI:10.1109/TGRS.2017.2704079
doi: 10.1109/TGRS.2017.2704079
28 MOUSIVAND A, VERHOEF W, MENENTI M, et al. Modeling top of atmosphere radiance over heterogeneous Non-Lambertian rugged terrain[J]. Remote Sensing, 2015, 7(6):8019-8044. DOI:10.3390/rs70608019
doi: 10.3390/rs70608019
[1] 刘鑫,黄进,杨瑛玮,李剑波. 基于CenterNet的改进遥感旋转目标检测[J]. 遥感技术与应用, 2023, 38(5): 1081-1091.
[2] 吴虹蓉,朱岚巍,余恒,施冬. 基于遥感的海南本岛植被覆盖度时空变化及其地形效应研究[J]. 遥感技术与应用, 2023, 38(5): 1062-1070.
[3] 张成才,刘威,杨峰,彭凯,周雪丽. 基于编码对齐生成对抗网络的异源遥感影像地表覆被变化检测方法[J]. 遥感技术与应用, 2023, 38(5): 1107-1117.
[4] 姜杰,于泉洲,牛振国,梁春玲,高玉国,张玲,张宏立. 基于Sentinel-2影像的南四湖菹草群落遥感提取研究[J]. 遥感技术与应用, 2023, 38(5): 1192-1202.
[5] 张志军,王茹,姚月,都成妍,申茜. 基于资源一号02D高光谱卫星影像的青海湖悬浮物浓度反演研究[J]. 遥感技术与应用, 2023, 38(5): 1159-1166.
[6] 胡腾云,解鹏飞,温亚楠,慕号伟. 基于不同深度学习模型提取建筑轮廓的方法研究[J]. 遥感技术与应用, 2023, 38(4): 892-902.
[7] 曹斌,郑恩让,沈钧戈. 基于神经网络注意力架构搜索的光学遥感图像场景分类[J]. 遥感技术与应用, 2023, 38(4): 913-923.
[8] 徐丹,林文鹏,马帅. 基于机器学习的棚户区识别应用——以上海棚户区为例[J]. 遥感技术与应用, 2023, 38(4): 990-1002.
[9] 张先冉,占文凤,缪诗祺,杜惠琳,王晨光,江斯达. 基于温度日内循环模型的全球主要城市地表热岛面积时空格局遥感研究[J]. 遥感技术与应用, 2023, 38(4): 842-854.
[10] 杜一博,朱瑞飞,巩加龙,王栋,钟兴. 基于吉林一号光谱星影像的农作物叶面积指数反演[J]. 遥感技术与应用, 2023, 38(4): 816-826.
[11] 黄仲良,何敬,刘刚,李政. 面向GEE平台的遥感影像分析与应用研究进展[J]. 遥感技术与应用, 2023, 38(3): 527-534.
[12] 蒙继华,郑贺刚,王松雪,叶金. 基于卫星遥感预测作物真菌毒素的可行性分析[J]. 遥感技术与应用, 2023, 38(3): 535-543.
[13] 齐文栋,何黎明,王安鹏,顾晓鹤,周艳兵. 低温冷害胁迫下的多熟水稻产量遥感监测[J]. 遥感技术与应用, 2023, 38(3): 558-565.
[14] 齐文栋,郑学昌,何黎明,卢珍,顾晓鹤,周艳兵. 基于多时相Sentinel-2影像的棉花雹灾时序变化遥感监测[J]. 遥感技术与应用, 2023, 38(3): 566-577.
[15] 张娟娟,谢一敏,董萍,孟圣博,司海平,王晓平,马新明. 基于深度学习的遥感影像时空融合及冬小麦种植面积提取[J]. 遥感技术与应用, 2023, 38(3): 578-587.