遥感技术与应用 2023, Vol. 38 Issue (5): 1239-1250 DOI: 10.11873/j.issn.1004-0323.2023.5.1239 |
遥感应用 |
|
|
|
|
国产叶面积指数产品在中国区域的一致性检验 |
喻樾1( ),张方敏1( ),陈镜明2 |
1.南京信息工程大学应用气象学院,气象灾害预报预警与评估协同创新中心/ 江苏省农业气象重点实验室,江苏 南京 210044 2.多伦多大学地理与规划系,加拿大 多伦多 M5S 3G3 |
|
Comparative Analysis of Differences of Leaf Area Index Products in China |
Yue YU1( ),Fangmin ZHANG1( ),Jingming CHEN2 |
1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/ Jiangsu Key Laboratory of Agricultural Meteorology,College of Applied Meteorology,Nanjing University of Information Science & Technology,Nanjing 210044,China 2.Department of Geography and Planning,University of Toronto,Toronto Canada M5S 3G3 |
1 |
LIU Yibo, JU Weiming, CHEN Jingming, et al. Spatial and temporal variations of forest LAI in China during 2000~2010[J]. Chinese Science Bulletin, 2012, 57(16):1435-1445.
|
1 |
柳艺博, 居为民, 陈镜明, 等. 2000~2010年中国森林叶面积指数时空变化特征[J]. 科学通报, 2012, 57(16):1435-1445.
|
2 |
ZENG Yelu, LI Jing, LIU Qinhuo. Review article: Global LAI ground validation dataset and product validation framework[J]. Advances in Earth Science, 2012, 27(2):165-174.
|
2 |
曾也鲁, 李静, 柳钦火. 全球LAI地面验证方法及验证数据综述[J]. 地球科学进展, 2012, 27(2):165-174.
|
3 |
FANG Hongliang. Development and validation of satellite Leaf Area Index(LAI)products in China[J]. Remote Sensing Technology and Application, 2020, 35(5):990-1003.
|
3 |
方红亮. 我国叶面积指数卫星遥感产品生产及验证[J]. 遥感技术与应用, 2020, 35(5):980-1003.
|
4 |
FANG Hongliang. Scaling effects of the true and effective Leaf Area Index (LAI And LAIe) and Clumping Index (CI)[J]. Journal of Geo-information Science, 2021,23(7): 1155-1168.
|
4 |
方红亮.真实和有效叶面积指数及聚集指数的尺度效应[J].地球信息科学学报,2021,23(7):1155-1168.
|
5 |
MYNENI R B, HOFFMAN S, KNYAZIKHIN Y, et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data[J]. Remote Sensing of Environment, 2002, 83(1-2):214-231. DOI:10.1016/S0034-4257(2)00074-3
doi: 10.1016/S0034-4257(2)00074-3
|
6 |
GANGULY S, SCHULL M A, SAMANTA A, et al. Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory[J]. Remote Sensing of Environment, 2008, 112(12):4333-4343. DOI:10.1016/j.rse.2008.07.014
doi: 10.1016/j.rse.2008.07.014
|
7 |
BARET F, HAGOLLE O, GEIGER B, et al. LAI, FAPAR and FCOVER CYCLOPES global products derived from Vegetation: Part 1: Principles of the algorithm[J]. Remote Sensing of Environment, 2009, 110(3):275-286. DOI:10.1016/j.rse.2007.02.018
doi: 10.1016/j.rse.2007.02.018
|
8 |
BARET F, WEISS M, LACAZE R, et al. GEOV1:LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production[J]. Remote Sensing of Environment,2013,137(10):299-309. DOI:10.1016/j.rse. 2012. 12.027
doi: 10.1016/j.rse. 2012. 12.027
|
9 |
MORISETTE J T, BARET F, PRIVETTE J L,et al.Validation of global moderate-resolution LAI products:A framework proposed within the CEOS land product validation subgroup[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(7):1804-1817. DOI:10.1109/TGRS.2006.872529
doi: 10.1109/TGRS.2006.872529
|
10 |
HU J N, TAN B, SHABANOV N, et al. Performance of the MISR LAI and FPAR algorithm: A case study in Africa[J]. Remote Sensing of Environment,2003,88(3):324-340. DOI:10.1016/j.rse.2003.05.002
doi: 10.1016/j.rse.2003.05.002
|
11 |
BACOUR C, BARET F, BEAL D, et al. Neural network estimation of LAI, FAPAR, FCOVER and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation[J]. Remote Sensing of Environment, 2006, 105(4):313-325. DOI:10.1016/j.rse.2006.07.014
doi: 10.1016/j.rse.2006.07.014
|
12 |
YUAN H, DAI Y J, XIAO Z Q,et al.Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling-Science Direct[J]. Remote Sensing of Environment,2011,115(5):1171-1187. DOI:10.1016/j.rse. 2011. 01.001
doi: 10.1016/j.rse. 2011. 01.001
|
13 |
LIU R G, CHEN J M, LIU J Y, et al. Application of a new leaf area index algorithm to China's landmass using MODIS data for carbon cycle research[J]. Journal of Environmental Management, 2007, 85(3):649-658. DOI:10.1016/j.jenvman.2006.04.023
doi: 10.1016/j.jenvman.2006.04.023
|
14 |
XIAO Z Q, LIANG S L, WANG J D, et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing,2013,52(1):209-223. DOI:10.1109/TGRS. 2013. 2237780
doi: 10.1109/TGRS. 2013. 2237780
|
15 |
FANG H L, JIANG C Y, LI W J, et al. Characterization and intercomparison of global moderate resolution Leaf Area Index (LAI) products: Analysis of climatologies and theoretical uncertainties[J]. Journal of Geophysical Research:Biogeosciences, 2013, 118(2):529-548. DOI:10.1002/jgrg.20051
doi: 10.1002/jgrg.20051
|
16 |
GESSNER U, NIKLAUS M, KUENZER C, et al. Intercomparison of Leaf Area Index products for a gradient of sub-humid to arid environments in West Africa[J]. Remote Sensing, 2013, 5(3):1235-1257. DOI:10.3390/rs5031235
doi: 10.3390/rs5031235
|
17 |
MA Peipei, LI Jing, LIU Qinhuo, et al. 2019. Multisensor synergistic quantitative Leaf Area Index product of China[J]. Journal of Remote Sensing, 23(6):1232–1252.马培培, 李静, 柳钦火, 等. 中国区域 MuSyQ 叶面积指数产品验证与分析[J]. 遥感学报, 2019, 23(6):1232-1252.
|
18 |
XU B D, LI J, LIU Q H, et al. A methodology to estimate representativeness of LAI station observation for validation: A case study with Chinese Ecosystem Research Network (CERN) in situ data[C]∥ Land Surface Remote Sensing II, 2014, 9260:926023. DOI:10.1117/12.2068845
doi: 10.1117/12.2068845
|
19 |
YANG Yongshuai, LI Ainong, JIN Huaan, et al. Intercomparison among GEOV1, GLASS and MODIS LAI products over mountainous area in Southwestern China[J]. Remote Sensing Technology and Application, 2016, 31(3):438-450.
|
19 |
杨勇帅, 李爱农, 靳华安, 等. 中国西南山区 GEOV1, GLASS 和 MODIS LAI 产品的对比分析[J]. 遥感技术与应用, 2016, 31(3):438-450.
|
20 |
LIU Yuan, ZHOU Maichun. Comparison of MODIS, CYCLOPES and GLASS LAI over Hanjiang River basin[J]. Remote Sensing for Land and Resources, 2018, 30(1):14-21.
|
20 |
刘远, 周买春. MODIS, CYCLOPES 和 GLASS 3 种 LAI 产品在韩江流域的对比[J]. 国土资源遥感, 2018, 30(1):14-21.
|
21 |
YANG F, YANG J, WANG J L, et al. Assessment and validation of MODIS and GEOV1 LAI with ground-measured data and an analysis of the effect of residential area in mixed pixel[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(2):763-774. DOI:10.1109/JSTARS.2014.2340452
doi: 10.1109/JSTARS.2014.2340452
|
22 |
WANG D D, MORTON D, MASEK J, et al. Impact of sensor degradation on the MODIS NDVI time series[J]. Remote Sensing of Environment, 2012, 119:55-61. DOI:10.1016/j.rse.2011.12.001
doi: 10.1016/j.rse.2011.12.001
|
23 |
Lyapustin A, Wang Y, Xiong X, et al. Science impact of MODIS C5 calibration degradation and C6 + improvements[J]. Atmospheric Measurement Techniques, 2014, 7(12):4353-4365. DOI:10.5194/amtd-7-7281-2014
doi: 10.5194/amtd-7-7281-2014
|
24 |
FAN W L, CHEN J M, JU W M, et al. GOST: A geometric-optical model for sloping terrains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 9(52):5469-5482. DOI:10.1109/TGRS.2013.2289852
doi: 10.1109/TGRS.2013.2289852
|
25 |
WEN J G, LIU Q, XIAO Q, et al. Characterizing land surface anisotropic reflectance over rugged terrain: A review of concepts and recent developments[J]. Remote Sensing,2018, 10(3):370. DOI:10.3390/rs10030370
doi: 10.3390/rs10030370
|
26 |
FAN Weiliang, LI Jing, LIU Qinhuo. GOST2: The improvement of the canopy reflectance model GOST in separating the sunlit and shaded leaves[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1423-1431. DOI:10.1109/JSTARS.2015.2413994
doi: 10.1109/JSTARS.2015.2413994
|
27 |
GENG J, CHEN J M, FAN W L, et al. GOFP: A geometric-optical model for forest plantations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5230-5241. DOI:10.1109/TGRS.2017.2704079
doi: 10.1109/TGRS.2017.2704079
|
28 |
MOUSIVAND A, VERHOEF W, MENENTI M, et al. Modeling top of atmosphere radiance over heterogeneous Non-Lambertian rugged terrain[J]. Remote Sensing, 2015, 7(6):8019-8044. DOI:10.3390/rs70608019
doi: 10.3390/rs70608019
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|