1 | Bablet A , Vu P V H , Jacquemoud S , et al . MARMIT: A Multilayer Radiative Transfer Model of Soil Reflectance to Estimate Surface Soil Moisture Content in The Solar Domain (400~2500?nm)[J]. Remote Sensing of Environment, 2018, 217:1-17. | 2 | Ochsner T E , Cosh M H , Cuenca R H , et al . State of the Art in Large-Scale Soil Moisture Monitoring[J]. Soil Science Society of America Journal, 2013, 77:1888.doi:10.2136/sssaj2013.03.0093 . | 3 | Yang H , Xiong L H , Ma Q M . Utilizing Satellite Surface Soil Moisture Data in Calibrating a Distributed Hydrological Model Applied in Humid Regions Through a Multi-Objective Bayesian Hierarchical Framework[J]. Remote Sensing, 2019, 11(11):1335.doi:10.3390/rs11111335 . | 4 | Zhang Qingfei , Xu Rongdi . The Significance and Approaches of Urban Forest Construction[J]. Discovery of Nature, 1999, 18: 82-86.寮犲簡璐癸紝寰愮粧濞�. 鍩庡競妫灄寤鸿鐨勬剰涔夊拰閫斿緞鎺㈣[J]. 澶ц嚜鐒舵帰绱�, 1999, 18:82-86. | 5 | Yu Kongjian , Li Dihua , Li Wei . On Establishing the Great Canal Regional Ecological Infrastructure: Strategy and Approaches[J]. Progress in Geography, 2004, 23: 1-12.淇炲瓟鍧氾紝鏉庤开鍗庯紝鏉庝紵. 璁哄ぇ杩愭渤鍖哄煙鐢熸�佸熀纭�璁炬柦鎴樼暐鍜屽疄鏂介�斿緞[J]. 鍦扮悊绉戝杩涘睍, 2004, 23: 1-12. | 6 | Wang Cheng . A Community of Common Environment for City Cluster and Strategy of Urban Forest Construction in China[J]. Journal of Chinese Urban Forestry, 2016, 14:1-7.鐜嬫垚. 涓浗鍩庡競鐢熸�佺幆澧冨叡鍚屼綋涓庡煄甯傛.鏋楀缓璁剧瓥鐣J]. 涓浗鍩庡競鏋椾笟, 2016, 14: 1-7. | 7 | Zeng W Z , Xu C , Huang J S , et al . Predicting Near-surface Moisture Content of Saline Soils from Near-infrared Reflectance Spectra with a Modified Gaussian Model[J]. Soil Science Society of America Journal, 2016, 80:1496. | 8 | Sadeghi M , Babaeian E , Tuller M , et al . The Optical Trapezoid Model: A Novel Approach to Remote Sensing of Soil Moisture Applied to Sentinel-2 and Landsat-8 Observations[J]. Remote Sensing of Environment, 2017, 198:52-68. | 9 | Carlson T N , Petropoulos G P . A New Method for Estimating of Evapotranspiration and Surface Soil Moisture from Optical and Thermal Infrared Measurements: The Simplified Triangle[J]. International Journal of Remote Sensing, 2019,40(20):7716-7729. | 10 | Mohanty B P , Cosh M H , Lakshmi V , et al . Soil Moisture Remote Sensing: State-of-the-Science[J]. Vadose Zone Journal, 2017, 16(1).doi:10.2136/vzj2016.10.0105 . | 11 | Baghdadi N , Choker M , Zribi M , et al . A New Empirical Model for Radar Scattering from Bare Soil Surfaces[J]. Remote Sensing, 2016, 8(11):920.doi:10.3390/rs8110920 . | 12 | Hajj M E , Baghdadi N , Zribi M , et al . Soil Moisture Retrieval over Irrigated Grassland Using X-Band Sar Data[J]. Remote Sensing of Environment, 2016, 176:202-218. | 13 | Amazirh A , Merlin O , Er-Raki S , et al . Retrieving Surface Soil Moisture At High Spatio-temporal Resolution from A Synergy between Sentinel-1 Radar and Landsat Thermal Data: A Study Case over Bare Soil[J]. Remote Sensing of Environment, 2018, 211:321-337. | 14 | Nemani R , Pierce L , Running S , et al . Developing Satellite-Derived Estimates of Surface Moisture Status[J]. Journal of Applied Meteorology, 1993, 32:548-557. | 15 | Carlson T N . Triangle Models and Misconceptions[J]. Journal of Applied Remote Sensing, 2013, 3:155-158. | 16 | Carlson T . An Overview of the "Triangle Method" for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery[J]. Sensors, 2007, 7:1612-1629. | 17 | Rahimzadeh-Bajgiran P , Berg A A , Champagne C , et al . Estimation of Soil Moisture Using Optical/Thermal Infrared Remote Sensing in the Canadian Prairies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83: 94-103. | 18 | Sadeghi M , Jones S B , Philpot W D . A Linear Physically-Based Model for Remote Sensing of Soil Moisture Using Short Wave Infrared Bands[J]. Remote Sensing of Environment, 2015, 164:66-76. | 19 | Lin Pengfei 锛� Zhu Xi 锛� He Zhibin 锛宔t al . Research Progress on Soil Moisture Temporal Stability[J]. Acta Ecologica Sinica锛�2018锛�38锛�3403-3413.钄洪箯椋烇紝鏈卞枩锛屼綍蹇楁枌锛� 绛�. 鍦熷¥姘村垎鏃堕棿绋冲畾鎬х爺绌惰繘灞昜J]. 鐢熸�佸鎶ワ紝2018锛� 38锛�3403-3413. | 20 | Zhang Xiaofei , Wang Yanglin , Li Zhengguo , et al . Relationships between Soil Barenss and Landscape Pattern in the Loess Plateau: A Case Studies on the Tower Region of the Yan鈥檃n City[J]. Quaternary Sciences, 2004, 24:709-716.寮犲皬椋�, 鐜嬩话楹�, 鏉庢鍥�, 绛� . 榛勫湡楂樺師鍦熷¥瑁搁湶涓庢櫙瑙傛牸灞�鍏崇郴鈥斾互寤跺畨甯傚疂濉斿尯涓轰緥[J]. 绗洓绾爺绌�, 2004, 24:709-716. | 21 | Zhao W F , Xiong L Y , Ding H , et al . Automatic Recognition of Loess Landforms Using Random Forest Method[J]. Journal of Mountain Science, 2017, 14:885-897. | 22 | Feyisa G L , Meilby H , Fensholt R , et al . Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35. | 23 | Ghahremanloo M , Mobasheri M R , Amani M . Soil Moisture Estimation Using Land Surface Temperature and Soil Temperature at 5 cm Depth[J]. International Journal of Remote Sensing, 2019, 40(1):104-117. | 24 | Walawender J P , Szymanowski M , Hajto M J , et al . Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data[J]. Pure and Applied Geophysics, 2014, 171:913-940. | 25 | Jim茅nez-Mu?oz J C , Sobrino J A . A Generalized Single-Channel Method for Retrieving Land Surface Temperature from Remote Sensing Data[J]. Journal of Geophysical Research, 2003, 108.doi:10.1029/2003jd003480 . | 26 | Wang Mengmeng , He Guojin , Zhang Zhaoming , et al . Atmospheric Water Vapor Retrieval from Landsat-8 TIRS Data Using Split-window Algorithm[J]. Remote Sensing Technology and Application, 2017,32(1):166-172.鐜嬬寷鐚�, 浣曞浗閲�, 寮犲厗鏄�, 绛� . 鍩轰簬Landsat 8 TIRS鏁版嵁鐨勫ぇ姘旀按姹藉惈閲忓弽婕斿妶绐楃畻娉昜J].閬ユ劅鎶�鏈笌搴旂敤, 2017,32(1):166-172.]. | 27 | Zhang Z , He G , Wang M , et al . Towards An Operational Method For Land Surface Temperature Retrieval from Landsat 8 Data[J]. Remote Sensing Letters锛�2016, 7: 279-288. | 28 | Xu Hanqiu . Retrieval of the Reflectance and Land Surface Temperature of the Newly-Landsat 8 Satellite[J]. Chinese Journal of Geophysics, 2015, 58:741-747.寰愭兜绉�. 鏂板瀷Landsat8鍗槦褰卞儚鐨勫弽灏勭巼鍜屽湴琛ㄦ俯搴﹀弽婕擺J]. 鍦扮悆鐗╃悊瀛︽姤锛�2015, 58: 741-747. | 29 | Deng Shubin , Chen Qiujin , Du Huijian , et al . ENVI Remote Sensing Image Processing Method [M]. Beijing锛欻igher Education Press锛�2014.閭撲功鏂岋紝闄堢閿︼紝鏉滀細寤猴紝 绛� . ENVI閬ユ劅鍥惧儚澶勭悊鏂规硶[M]. 鍖椾含锛氶珮绛夋暀鑲插嚭鐗堢ぞ锛�2014. | 30 | Chavez P S J . Image-based Atmospheric Corrections-Revisited and Improved[M]. Engineering and Remote Sensing, 1996, 62:1025-1036. | 31 | Zhang X P 锛� Wang D X 锛� Hao H K 锛宔t al . Effects of Land Use/Cover Changes and Urban Forest Configuration on Urban Heat Islands in a Loess Hilly Region: Case Study Based on Yan鈥檃n City, China[J]. International Journal of Environmental Research and Public Health, 2017, 14:840.doi:10.3390/ijerph14080840 . | 32 | Wang M M , Zhang Z J , Hu T . A Practical Single-Channel Algorithm for Land Surface Temperature Retrieval: Application to Landsat Series Data[J]. Journal of Geophysical Research-Atmospheres, 2019,124(1):299-316. | 33 | Wang M M , He G J , Zhang Z M , et al . NDVI-based Split-Window Algorithm for Precipitable Water Vapour Retrieval from Landsat-8 TIRS Data over Land Area[J]. Remote Sensing Letters, 2015, 6:904-913. | 34 | Klinke R , Kuechly H , Frick A , et al . Indicator-based Soil Moisture Monitoring of Wetlands by Utilizing Sentinel and Landsat Remote Sensing Data[J]. PFG 鈥� Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2018,86:71-84. | 35 | Li Q Q , Zhang X , Wang C Q , et al . Spatial Prediction of Soil Nutrient in a Hilly Area Using Artificial Neural Network Model Combined With Kriging[J]. Archives of Agronomy and Soil Science, 2016, 62:1541-1553. | 36 | Xia L , Song, X N, Leng P , et al . A Comparison of Two Methods for Estimating Surface Soil Moisture based on the Triangle Model Using Optical/Thermal Infrared Remote Sensing over the Source Area of the Yellow River[J]. International Journal of Remote Sensing, 2019, 40 (SI): 2120-2137. | 37 | Zhang Xinping . Study on Landscape Pattern Dynamics and Driving Forces in Yan'an Urban Forest[D]. Yangling: Northwest A&F University, 2018.寮犳柊骞�. 寤跺畨鍩庡競妫灄鏅鏍煎眬鍔ㄦ�佸強椹卞姩鍔涚爺绌禰D]. 鏉ㄥ噷: 瑗垮寳鍐滄灄绉戞妧澶у, 2018. |
|