Remote Sensing Technology and Application 鈥衡�� 2020, Vol. 35 鈥衡�� Issue (1): 174-184.DOI: 10.11873/j.issn.1004-0323.2020.1.0174

Previous Articles     Next Articles

Leaf Area Index Inversion of Summer Maize at Multiple Growth Stages based on BP Neural Network

Jun Liu1(),Qingyan Meng2,3(),Xiaosan Ge1,Shunxi Liu4,Xu Chen2,3,Yunxiao Sun2,3   

  1. 1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
    2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
    3. Sanya Institute of Remote Sensing, Sanya 572029, China
    4. China Land Surveying & Planning Institute, Beijing 100035, China
  • Received:2018-08-23 Revised:2019-11-15 Online:2020-04-01 Published:2020-02-20
  • Contact: Qingyan Meng

鍩轰簬BP绁炵粡缃戠粶鐨勫鐜夌背澶氱敓鑲叉湡鍙堕潰绉寚鏁板弽婕旂爺绌�

鍒樹繆1(),瀛熷簡宀�2,3(),钁涘皬涓�1,鍒橀『鍠�4,闄堟棴2,3,瀛欎簯鏅�2,3   

  1. 1. 娌冲崡鐞嗗伐澶у娴嬬粯涓庡浗鍦熶俊鎭伐绋嬪闄紝娌冲崡 鐒︿綔 454000
    2. 涓浗绉戝闄㈤仴鎰熶笌鏁板瓧鍦扮悆鐮旂┒鎵�锛屽寳浜� 100101
    3. 涓変簹涓閬ユ劅鐮旂┒鎵�锛屾捣鍗� 涓変簹572029
    4. 涓浗鍦熷湴鍕樻祴瑙勫垝闄紝鍖椾含 100035
  • 閫氳浣滆��: 瀛熷簡宀�
  • 浣滆�呯畝浠�:鍒� 淇婏紙1993-锛夛紝鐢凤紝婀栧崡琛¢槼浜猴紝纭曞+鐮旂┒鐢燂紝涓昏浠庝簨瀹氶噺閬ユ劅浠ュ強鍐滀笟閬ユ劅鐮旂┒銆侲?mail锛�310122664@qq.com銆�
  • 鍩洪噾璧勫姪:
    鍥涘窛鐪佺鎶�璁″垝椤圭洰鈥滃熀浜庡ぇ鏁版嵁鏈哄櫒瀛︿範涓庡啝灞傚弽灏勭巼妯″瀷缁撳悎鐨勬按绋诲彾闈㈢Н鎸囨暟鎻愬彇鎶�鏈��(2018JZ0054);楂樺垎杈ㄧ巼瀵瑰湴瑙傛祴绯荤粺閲嶅ぇ涓撻」鈥淕F?6鍗槦瀹藉箙鐩告満鍦拌〃瑕嗙洊鐩戞祴鍙婂湴琛ㄨ鐩栧彉鍖栧揩閫熸娴嬫妧鏈��(30?Y20A07?9003?17/18);娴峰崡鐪侀噸鐐圭爺鍙戣鍒掗」鐩�滃熀浜庨珮鍒嗚鲸鐜囨暟鎹殑鍐滀笟闄嗚〃鐜鍏抽敭鍙傞噺閬ユ劅鎻愬彇鎶�鏈��(ZDYF2018231);鏀垮簻闂村浗闄呯鎶�鍒涙柊鍚堜綔閲嶇偣涓撻」鈥滃熀浜庣孩澶栭仴鎰熷拰鐢电灞備俊鎭殑鍦伴渿鐩戞祴棰勬祴鎶�鏈爺绌垛��(2016YFE0122200)

Abstract:

Leaf Area Index (LAI) is an important vegetation structure parameter in biogeochemical cycling. In view of the lack of LAI inversion in the multiple growth period of summer maize based on GF-1 WFV satellite images in China, this study constructs a BP neural network model (BP1 model and BP2 model) based on different hidden layers, and compares and analyzes the accuracy of the inversion between the BP1 model, BP2 model and 6 statistical models (NDVI銆丷VI銆丏VI銆丒VI銆丼AVI銆丄RVI). Based on the measured data, BP1 model and BP2 model are used to map the LAI dynamic changes of summer maize. The results show that LAI has good correlation with 6 common statistical models, and the fitting degree of the NDVI exponential equation regression model is the best. The overallR 2 of BP neural network model is slightly smaller than the statistical model, while RMSE is less than the statistical model, and the errors with the measured value is smaller than the statistical model. So both the statistical model and the BP neural network model have advantages and disadvantages. The BP2 model is superior to the BP1 model inR 2 and RMSE, and can obtain more accurate inversion values, and the overall prediction accuracy of BP2 is higher. Based on the BP neural network simulation of summer maize growth period inversion, the LAI value presents a slow increase to the gradual decrease of S type change process, which is basically in line with the crop growth rules. The study combines with the BP neural network model established by different hidden layers to provide a method for the application of GF-1 satellite in the application of crop leaf area index multiple growth period inversion.

Key words: Summer maize, Leaf Area Index(LAI), BP neural network model, Statistical model, Multiple growth period

鎽樿锛�

鍙堕潰绉寚鏁帮紙Leaf Area Index,LAI锛夋槸鐢熺墿鍦扮悆鍖栧寰幆涓噸瑕佺殑妞嶈缁撴瀯鍙傛暟銆傞拡瀵圭洰鍓嶅熀浜庢垜鍥紾F-1 WFV鍗槦褰卞儚鐨勫鐜夌背澶氱敓鑲叉湡LAI鍙嶆紨鐮旂┒杈冨皯鐨勯棶棰橈紝鍩轰簬涓嶅悓闅愬惈灞傛瀯寤築P绁炵粡缃戠粶妯″瀷锛圔P1妯″瀷鍜孊P2妯″瀷锛夛紝瀵规瘮鍒嗘瀽BP1妯″瀷銆丅P2妯″瀷鍜�6绉嶇粺璁℃ā鍨嬶紙NDVI銆丷VI銆丏VI銆丒VI銆丼AVI銆丄RVI锛夊弽婕斾箣闂寸殑绮惧害宸紓锛屽苟鏍规嵁瀹炴祴鏁版嵁缁樺埗BP1妯″瀷鍜孊P2妯″瀷鐨勫鐜夌背澶氱敓鑲叉湡LAI鍔ㄦ�佸彉鍖栧浘銆傜粨鏋滆〃鏄�:LAI涓�6绉嶅父鐢ㄧ殑缁熻妯″瀷鍧囨湁鑹ソ鐩稿叧鎬э紝鍏朵腑NDVI鎸囨暟鏂圭▼寮忓洖褰掓ā鍨嬫嫙鍚堝害鏈�浼橈紱BP绁炵粡缃戠粶妯″瀷鏁翠綋R 2鐣ュ皬浜庣粺璁℃ā鍨嬶紝鑰孯MSE鍒欏皬浜庣粺璁℃ā鍨嬶紝鍙栧緱浜嗕笌瀹炴祴鍊煎樊寮傛洿灏忕殑缁撴灉锛岀粺璁℃ā鍨嬩笌BP绁炵粡缃戠粶妯″瀷鍚勬湁浼樺姡涔嬪锛汢P2妯″瀷鍦�R 2鍜孯MSE鍧囦紭浜嶣P1妯″瀷锛岃兘鑾峰緱鏇翠负绮剧‘鐨勫弽婕斿�硷紝BP2鏁翠綋棰勬祴绮惧害鏇撮珮锛涘熀浜嶣P绁炵粡缃戠粶妯℃嫙澶忕帀绫崇敓鑲叉湡鍙嶆紨锛孡AI鍊煎憟鐜扮紦鎱㈠崌楂樷�斿揩閫熷闀库�旈�愭笎鍑忓皬鐨凷鍨嬪彉鍖栬繃绋嬶紝鍩烘湰绗﹀悎浣滅墿鐢熼暱瑙勫緥銆傝鐮旂┒缁撳悎涓嶅悓闅愬惈灞傚缓绔嬬殑BP绁炵粡缃戠粶妯″瀷锛屼负GF-1鍗槦鍦ㄤ綔鐗╁彾闈㈢Н鎸囨暟澶氱敓鑲叉湡鍙嶆紨鐨勫簲鐢ㄦ帹骞挎彁渚涗簡鏂规硶鏀拺銆�

鍏抽敭璇�: 澶忕帀绫�, 鍙堕潰绉寚鏁�, BP绁炵粡缃戠粶妯″瀷, 缁熻妯″瀷, 澶氱敓鑲叉湡

CLC Number: