Remote Sensing Technology and Application 鈥衡�� 2020, Vol. 35 鈥衡�� Issue (1): 185-193.DOI: 10.11873/j.issn.1004-0323.2020.1.0185

Previous Articles     Next Articles

Study of the Improved Similar Pixel Selection Method on ESTARFM

Shiyuan Dong1,2(),Wenjuan Zhang2(),Junyi Xu1,Jianhang Ma2   

  1. 1. College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
  • Received:2018-10-10 Revised:2019-12-15 Online:2020-04-01 Published:2020-02-20
  • Contact: Wenjuan Zhang

ESTARFM鐩镐技鍍忓厓閫夊彇鏂规硶鐨勬敼杩涚爺绌�

钁d笘鍏�1,2(),寮犳枃濞�2(),璁稿悰涓�1,椹缓琛�2   

  1. 1. 灞变笢绉戞妧澶у娴嬬粯绉戝涓庡伐绋嬪闄紝灞变笢 闈掑矝 710054
    2. 涓浗绉戝闄㈤仴鎰熶笌鏁板瓧鍦扮悆鐮旂┒鎵�锛屽寳浜� 100094
  • 閫氳浣滆��: 寮犳枃濞�
  • 浣滆�呯畝浠�:钁d笘鍏�(1994-)锛岀敺锛屾渤鍖楅偄鍙颁汉锛岀澹爺绌剁敓锛屼富瑕佷粠浜嬮仴鎰熸暟鎹瀺鍚堢爺绌躲�侲?mail:dongsyRS@163.com銆�
  • 鍩洪噾璧勫姪:
    涓浗绉戝闄㈤仴鎰熸暟瀛楁墍鎵�闀块潚骞村熀閲戦」鐩�(Y5ZZ11101B);鍥藉閲嶇偣鐮斿彂璁″垝椤圭洰鈥滈潤姝㈣建閬撳叏璋辨楂樺厜璋辨帰娴嬫妧鏈�濄�佲�滈珮绮惧害瀹氭爣涓庡弽婕旀妧鏈��(2016YFB0500304)

Abstract:

The ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) is a classic spatiotemporal filter-based algorithm, which is used in the many fields. The similar pixel selection process in the ESTARFM model is affected by the size of the size of search window and the number of classifications. In the current study, the size of the search windows is more uniform, and the number of classifications lacks uniformity. In order to reduce the influence of the number of classifications in the ESTARFM algorithm on the performance of the algorithm. The similar pixel selection method in the STNLFFM (A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method) combined with the ESTARFM model to propose the ESTARFM_NL model. The study designed two sets of data under different conditions of phase change for comparative analysis. The results show that the overall distribution of the relative error histogram of ESTARFM_NL and ESTARFM is tight and consistent. When the fusion results are evaluated by the average relative error and correlation coefficient, the difference between the two algorithms is considerable, indicating that the fusion accuracy of the two algorithms is equivalent. Comparing the efficiency of the two algorithms, we found that the ESTARFM_NL running time can be greatly reduced. Therefore, ESTARFM_NL provides an alternative fusion scheme for large-area or long-term sequence remote sensing data with large data volume.

Key words: Spatiotemporal fusion, ESTARFM, Similar pixel selection, Threshold value method, Running efficiency

鎽樿锛�

ESTARFM(Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model)鏄竴绉嶇粡鍏哥殑鍩轰簬鏉冮噸婊ゆ尝鐨勬椂绌鸿瀺鍚堢畻娉曪紝瀹冨湪浼楀棰嗗煙寰楀埌骞挎硾搴旂敤銆傜浉浼煎儚鍏冮�夊彇鏄叾涓�涓噸瑕佹楠わ紝ESTARFM妯″瀷涓浉浼煎儚鍏冮�夊彇杩囩▼鍙楁悳绱㈡澶у皬鍜屽垎绫绘暟褰卞搷锛屽綋鍓嶇殑鐮旂┒涓悳绱㈡澶у皬鐨勮瀹氳緝涓虹粺涓�锛岃�屽垎绫绘暟澶у皬璁惧畾缂轰箯缁熶竴鎬с�備负闄嶄綆ESTARFM绠楁硶涓垎绫绘暟瀵圭畻娉曟�ц兘鐨勫奖鍝嶏紝灏哠TNLFFM(A Spatial and Temporal Nonlocal Filter-Based Data Fusion Method)涓浉浼煎儚鍏冮�夊彇鏂规硶涓嶦STARFM妯″瀷鐩哥粨鍚堬紝鎻愬嚭鏀硅繘鐨凟STARFM_NL妯″瀷銆傜爺绌惰璁′簡涓ょ粍涓嶅悓鏃剁浉鍙樺寲鏉′欢涓嬬殑鏁版嵁杩涜瀵规瘮鍒嗘瀽銆傜粨鏋滆〃鏄庯細ESTARFM_NL涓嶦STARFM铻嶅悎缁撴灉鐩稿璇樊鐩存柟鍥炬�讳綋鍒嗗竷瓒嬭繎涓�鑷达紝鍚屾椂鍒╃敤骞冲潎鐩稿璇樊鍜岀浉鍏崇郴鏁板铻嶅悎缁撴灉杩涜璇勪环锛屽彂鐜颁袱绉嶇畻娉曚箣闂寸簿搴﹀樊寮傝緝灏忥紝琛ㄦ槑涓ょ绠楁硶铻嶅悎绮惧害鐩稿綋锛涘姣斾袱绉嶇畻娉曡繍绠楁晥鐜囷紝鍙戠幇ESTARFM_NL杩愯鏃堕棿鑳藉寰楀埌澶у箙缂╁噺銆傚洜姝わ紝ESTARFM_NL涓哄ぇ鍖哄煙鎴栭暱鏃堕棿搴忓垪閬ユ劅鏁版嵁鐨勬椂绌鸿瀺鍚堟彁渚涗簡涓�绉嶅彲閫夋嫨鐨勮瀺鍚堟柟妗堛��

鍏抽敭璇�: 鏃剁┖铻嶅悎, ESTARFM, 鐩镐技鍍忓厓閫夊彇, 闃堝�兼硶, 杩愯鏁堢巼

CLC Number: