1 | Liao Fei , Li Wenting , Zhang Ziran ,et al .Statistical Characteristics of Rapid Changes in the Intensity and Track of Tropical Cyclones in the South China Sea from 1949 to 2017[J].Journal of Ocean,2019,41(9):126-135.寤栬彶锛屾潕鏂囧┓锛屽紶瀛愮劧锛� 绛� .1949~2017骞村崡娴锋捣鍩熺儹甯︽皵鏃嬪己搴﹀拰璺緞蹇�熷彉鍖栫粺璁$壒寰乕J].娴锋磱瀛︽姤,2019,41(9):126-135. | 2 | Yu Jinhua , Sheng Siwei .Comparison of Tropical Cyclone Intensity Data in the Northwest Pacific[J].Meteorological Science,2010,30(6):778-784.浣欓敠鍗庯紝鐩涙�濅紵.瑗垮寳澶钩娲嬬儹甯︽皵鏃嬪己搴﹁祫鏂欑殑瀵规瘮[J].姘旇薄绉戝锛�2010,30(6):778-784. | 3 | Yin Chengtuan , Zhang Jinshan , Xiong Mengjie ,et al .Analysis on the Disaster trend of typhoon and tide in south China sea [J].Journal of Tropical Oceanograpy,2019,38(1):38-45.娈锋垚鍥紝寮犻噾鍠勶紝鐔婃ⅵ濠曪紝 绛� .鎴戝浗鍗楁捣娌挎捣鍙伴鍙婃毚娼伨瀹宠秼鍔垮垎鏋怺J].姘旇薄绉戝锛�2019,38(1):38-45. | 4 | Tang Tingting ,LiQingxi, Li Guangxin ,et al .Research on Typhoon Intensity Prediction Statistical Model based on Meteorological Big Data[J].Integration Technology,2016,5(2):73-84.姹ゅ┓濠凤紝鏉庢櫞宀氾紝鏉庡箍閼紝 绛� .鍩轰簬姘旇薄澶ф暟鎹殑鍙伴寮哄害棰勬祴缁熻妯″瀷鐮旂┒[J].闆嗘垚鎶�鏈�,2016,5(2):73-84. | 5 | Zhao Xiaoli .Research on Cloud Image Cloud Detection and Classification of Meteorological Satellites[D].Guangzhou:South China University of Technology,2014.璧垫檽鍒�. 姘旇薄鍗槦浜戝浘浜戞娴嬪強鍒嗙被鐨勭爺绌禰D].骞垮窞锛氬崕鍗楃悊宸ュぇ瀛�,2014. | 6 | Tian Wenzhe , Fu Randi , Jin Wei ,et al .Adaptive Fuzzy Support Vector Machine for Classification of Clouds in Satellite Imagery[J].Journal of Wuhan University,2017锛�42(4)锛�488-495.闄堢敯鏂囧摬锛岀鍐夎开锛岄噾鐐滐紝 绛� .闈㈠悜鍗槦浜戝浘浜戝垎绫荤殑鑷�傚簲妯$硦鏀寔鍚戦噺鏈篬J].姝︽眽澶у瀛︽姤,2017锛�42(4)锛�488-495. | 7 | Cao Minjie , Liu Zenghong , Wang Zhenfeng ,et al .A Review of Real Time Marine Monitoring and Its Application in Typhoon Area[J].Advances in Meteorological Technology,2017(4)锛�47-52.鏇规晱鏉帮紝鍒樺瀹忥紝鐜嬫尟宄帮紝 绛� .鍙伴娴峰煙瀹炴椂娴锋磱鐩戞祴鍙婂叾搴旂敤鐮旂┒缁艰堪[J].姘旇薄绉戞妧杩涘睍,2017(4)锛�47-52. | 8 | Shi Lanhong , Cui Linli , Zhao Bingke ,et al .Study on the Vertical Distribution of Cloud Properties in the Eye Sall and Surrounding Spiral Cloud Belt of Typhoon[J].Journal of Tropical Meteorological,2015(1):53-64.鍙插叞绾紝宕旀灄涓斤紝璧靛叺绉戯紝 绛� .鍙伴鐪煎鍙婂懆鍥磋灪鏃嬩簯甯︿簯灞炴�у瀭鐩村垎甯冪爺绌禰J].鐑甫姘旇薄瀛︽姤,2015(1):53-64. | 9 | Dvorak V F .Tropical Cyclone Intensity Analysis Usingsatellite Data[R].Noaa Technical Report, 1984, NESDUS,11. | 10 | Yang Wei , Ouyang Sida , Fan Kuikui ,et al .Classification of Remote Sensing Image based on BP Neural Network based on Double Tree Complex Wavelet Decomposition[J].Remote Sensing Technology and Application,2018,33(2)锛�313-320.鏉ㄦ湨鏈︼紝娆ч槼鏂揪锛岃寖濂庡锛� 绛� .鍩轰簬鍙屾爲澶嶅皬娉㈠垎瑙g殑BP绁炵粡缃戠粶閬ユ劅褰卞儚鍒嗙被[J].閬ユ劅鎶�鏈笌搴旂敤,2018,33(2)锛�313-320. | 11 | Zhao Liangliang .Research and Application of Cloud Image Recognition and Ultra-short-term Direct Solar Radiation Prediction based on Neural Network[D].Nanjing:Southeast University,2017.璧典寒浜�.鍩轰簬绁炵粡缃戠粶鐨勪簯鍥捐瘑鍒笌瓒呯煭鏈熺洿鎺ュお闃冲厜杈愬皠棰勬祴鐮旂┒鍙婂簲鐢╗D].鍗椾含锛氫笢鍗楀ぇ瀛�,2017. | 12 | Cui Xianliang , Chen Lifu , Xing Xuemin ,et al .Remote Sensing Image Scene Classification based on Frequency Band Feature Fusion and GL-CNN. Remote Sensing Technology and Application, 2019, 34(4): 712-719. [宕斿厛浜�,锛岄檲绔嬬锛岄偄瀛︽晱锛岀瓑. 鍩轰簬棰戝甫鐗瑰緛铻嶅悎鐨凣L-CNN閬ユ劅鍥惧儚鍦烘櫙鍒嗙被[J].閬ユ劅鎶�鏈笌搴旂敤,2019,34(4):712-719.] | 13 | Zhuang Fuzhen , Luo Ping , He Qing ,et al .Progress in Migration Learning Research[J].Journal of Software,2015,26(1):26-39.搴勭鎸紝缃楀钩锛屼綍娓咃紝 绛� .杩佺Щ瀛︿範鐮旂┒杩涘睍[J].杞欢瀛︽姤,2015,26(1):26-39. | 14 | Wang Wenpeng , Mao Wentao , He Jianliang ,et al .Smoke Recognition Method based on Deep Migration Learning[J]Journal of Computer Applications,2017,37(11):3176-3181.鐜嬫枃鏈嬶紝姣涙枃娑涳紝浣曞缓妯戯紝 绛� .鍩轰簬娣卞害杩佺Щ瀛︿範鐨勭儫闆捐瘑鍒柟娉昜J].璁$畻鏈哄簲鐢�,2017,37(11):3176-3181. | 15 | Huang Jie , Jiang Zhiguo , Zhang Haopeng ,et al .Ship Target Detection based on Convolutional Neural Network for Remote Sensing Image[J].Journal of Beijing Univeristy of Aeronautics,2017,43(9):1841-1848.榛勬磥锛屽蹇楀浗锛屽紶娴╅箯锛� 绛� .鍩轰簬鍗风Н绁炵粡缃戠粶鐨勯仴鎰熷浘鍍忚埌鑸圭洰鏍囨娴媅J].鍖椾含鑸┖鑸ぉ澶у瀛︽姤,2017,43(9):1841-1848. | 16 | Sun Chao , Lu Junwei , Liu Feng ,et al .Research on Infraredimage Super-resolution Method based on Migration Learning[J].Laser & Infrared,2017,47(12):1559-1564.瀛欒秴锛屽悤淇婁紵锛屽垬宄帮紝 绛� .鍩轰簬杩佺Щ瀛︿範鐨勭孩澶栧浘鍍忚秴鍒嗚鲸鐜囨柟娉曠爺绌禰J].婵�鍏変笌绾㈠,2017,47(12):1559-1564. | 17 | Long M S , Cao Y , Wang J M ,et.al .Learning Transferable Features with Deep Adaptation Networks[C]鈭n International Conference on Machine Learning,2015:97-105. | 18 | Afridi M J , Ross A , Shapiro E M .On Automated Source Selection for Transfer Learning in Convolutional Neural Networks[J].Pattern Recognition,2017,73:65-75. | 19 | Gao Song , Zhao Peng , Pan Bin ,et al .The Typhoon Path Nowcasting Model based on LSTM Neural Network[J].Acta Oceanologica Sinica,2016,37(5)锛�8-12.楂樻澗,璧甸箯,娼樻枌, 绛� .鍩轰簬闀跨煭鏃惰蹇嗙缁忕綉缁滅殑鍙伴璺緞涓磋繎棰勬姤妯″瀷[J].娴锋磱瀛︽姤,2016,37(5)锛�8-12. | 20 | Simonyan K , Zisserman A .Very Deep Convolutional Networks for Large-scale Image Recognition[J].Computer Science,2014,arxiv:1409.1556. | 21 | Szegedy C , Vanhoucke V , Ioffe S ,et.al .Rethinking the Inception Architecture for Computer Vision[C]鈭n International Conference on Learning Representation,Computer Science,2015:2818-2826. | 22 | He K , Zhang X , Ren S ,et al .Deep Residual Learning for Image Recognition[C]鈭omputer Vision and Pattern Recognition,2015:770-778. | 23 | Yosinski J , Clune J , Bengio Y ,et al .How Transferable are Features in Deep Neural Networks?[C]鈭dvances in Neural Information Processing Systems,2014:3320-3328. |
|