基于孪生残差神经网络的GF-2影像林地变化检测
艾遒一,黄华国,郭颖,刘炳杰,陈树新,田昕

Forest Change Detection based on Siamese Neural Network with GF-2 Image: A Case of Jiande Forest Farm, Zhejiang
Qiuyi AI,Huaguo HUANG,Ying GUO,Bingjie LIU,Shuxin CHEN,Xin TIAN
表5 不同方法变化检测指标对比
Table 5 Comparison of change detection indicators of different methods
编号方法主干提取网络变化类别精确率召回率F1分数
1OursResNet50Class096.4894.5995.53
Class176.2575.5275.88
Class254.0678.4964.02
Macro avg75.6082.8778.48
2OursResNet50+CBAMClass096.6095.7196.15
Class175.4181.6378.40
Class266.2367.3366.78
Macro avg79.4181.5980.44
3OursResNet50+SEClass095.8198.5797.17
Class187.1277.1281.81
Class290.8656.8069.90
Macro avg91.2677.5082.96
4FC-Siam-concClass096.6689.5092.94
Class175.9787.6181.37
Class221.7149.5030.18
Macro avg64.7875.5368.16
5FC-Siam-diffClass095.9095.2095.55
Class183.8483.6483.74
Class237.7744.1040.67
Macro avg72.5074.3073.32