基于孪生残差神经网络的GF-2影像林地变化检测
|
艾遒一,黄华国,郭颖,刘炳杰,陈树新,田昕
|
Forest Change Detection based on Siamese Neural Network with GF-2 Image: A Case of Jiande Forest Farm, Zhejiang
|
Qiuyi AI,Huaguo HUANG,Ying GUO,Bingjie LIU,Shuxin CHEN,Xin TIAN
|
|
表5 不同方法变化检测指标对比
|
Table 5 Comparison of change detection indicators of different methods
|
|
编号 | 方法 | 主干提取网络 | 变化类别 | 精确率 | 召回率 | F1分数 |
---|
1 | Ours | ResNet50 | Class0 | 96.48 | 94.59 | 95.53 | Class1 | 76.25 | 75.52 | 75.88 | Class2 | 54.06 | 78.49 | 64.02 | Macro avg | 75.60 | 82.87 | 78.48 | 2 | Ours | ResNet50+CBAM | Class0 | 96.60 | 95.71 | 96.15 | Class1 | 75.41 | 81.63 | 78.40 | Class2 | 66.23 | 67.33 | 66.78 | Macro avg | 79.41 | 81.59 | 80.44 | 3 | Ours | ResNet50+SE | Class0 | 95.81 | 98.57 | 97.17 | Class1 | 87.12 | 77.12 | 81.81 | Class2 | 90.86 | 56.80 | 69.90 | Macro avg | 91.26 | 77.50 | 82.96 | 4 | FC-Siam-conc | — | Class0 | 96.66 | 89.50 | 92.94 | Class1 | 75.97 | 87.61 | 81.37 | Class2 | 21.71 | 49.50 | 30.18 | Macro avg | 64.78 | 75.53 | 68.16 | 5 | FC-Siam-diff | — | Class0 | 95.90 | 95.20 | 95.55 | Class1 | 83.84 | 83.64 | 83.74 | Class2 | 37.77 | 44.10 | 40.67 | Macro avg | 72.50 | 74.30 | 73.32 |
|
|
|